The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
The in-vessel components of the WENDELSTEIN 7-X stellarator consist of the divertor components and the wall protection with its internal cooling supply. The main components of the open divertor are the vertical and horizontal target plates which form the pumping gap, the cryo-vacuum pumps and the control coils. The divertor volume is closed by graphite shielded baffle-modules and with divertor closures. All these components are designed to be actively water-cooled. For the first commissioning phase planned in 2014, an inertial-cooled test divertor will be installed instead of the actively water-cooled high heat flux divertor. The wall protection consists of graphite-protected heat shields in the higher loaded areas and stainless steel panels in the lower loaded regions. The wall protection cooling circuits are connected through 80 supply-ports via so-called "plug-ins". It is envisaged to protect the diagnostic ports by panel-type port-liners. Special graphite-shielded port liners are used on the diagnostic injector and the neutral beam injector ports. The in-vessel components are mainly manufactured and tested at the Max-Planck-Institute für Plasmaphysik in its Garching workshop. Panels, high heat flux target elements and control coils are delivered by industrial partners. Manufacturing of the KiP ("Komponenten im Plasmagefäß") is in plan. Delivery of the components will be in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.