The aim of this study was to investigate the dosimetric characteristics of the electron beams generated by the light intraoperative accelerator, Liac® (SORDINA, Italy), using Monte Carlo (MC) calculations. Moreover we investigated the possibility of characterizing the Liac® dosimetry with a minimal set of dosimetric data. In fact accelerator commissioning requires measurements of both percentage depth doses (PDDs) and off-axis profiles for all the possible combinations of energy, applicator diameter and bevelled angle. The Liac® geometry and water phantom were simulated in a typical measurement setup, using the MC code EGSnrc/BEAMnrc. A simulated annealing optimization algorithm was used in order to find the optimal non-monoenergetic spectrum of the initial electron beam that minimizes the differences between calculated and measured PDDs. We have concluded that, for each investigated nominal energy beam, only the PDDs of applicators with diameters of 30, 70 and 100 mm and the PDD without an applicator were needed to find the optimal spectra. Finally, the output factors of the entire set of applicator diameters/bevelled angles were calculated. The differences between calculated and experimental output factors were better than 2%, with the exception of the smallest applicator which gave differences between 3% and 4% for all energies. The code turned out to be useful for checking the experimental data from various Liac® beams and will be the basis for developing a tool based on MC simulation to support the medical physicist in the commissioning phase.
The present study confirms that parallel-plate ionization chambers can properly and accurately substitute ferrous sulphate detectors in reference dosimetry of LIAC and NOVAC mobile linear accelerators. Therefore, we hope that the most commonly used protocols for reference dosimetry in external-beam radiotherapy will be updated in order to provide guidance in the calibration of electron beams from linear accelerators dedicated to IORT, so that users may benefit from specific, authoritative and up-to-date recommendations.
The beam shaper device is able to provide square∕rectangular∕squircle fields with adequate dose homogeneity for mobile dedicated accelerators, thus allowing conformal treatment with IOERT. Monte Carlo simulation can be a very useful tool to simulate any clinical set up and can be used to create a data set to calculate MUs, thereby increasing the accuracy of the delivered dose during IOERT procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.