Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.
A chemical vapour deposition diamond detector fabricated at Rome 'Tor Vergata' University was investigated for its applicability as transfer dosimeter in radiotherapy photon beams with small field sizes. The detector consists of a single crystal diamond with a very small sensitive volume (0.004 mm 3). The detector showed a measurement repeatability of 0.1% and a long term reproducibility of 0.4%. Monte Carlo simulations revealed a response dependence on the photon beam energy of about 2% from the 60 Co quality to 10 MV photon beam. The calculated detector response was found to be independent of field size within 0.5% from 10 cm × 10 cm to 2 cm × 2 cm beam size for both 6 MV and 10 MV photon beams, increasing in smaller field sizes. D w values obtained by the diamond detector were found to be in agreement with D w values obtained by a small volume ionization chamber in photon beams with field size down to 2 cm × 2 cm.
High-energy electron beams generated by linear accelerators, typically in the range 6 to 20 MeV, are used in small field sizes for radiotherapy of localized superficial tumors. Unshielded silicon diodes (Si-D) are commonly considered suitable detectors for relative dose measurements in small electron fields due to their high spatial resolution. Recently, a novel synthetic single crystal diamond diode (SCDD) showed suitable properties for standard electron beams and small photon beams dosimetry. The aim of the present study is twofold: to characterize 6 to 15 MeV small electron beams shaped by using commercial tubular applicators with 2, 3, 4 and 5 cm diameter and to assess the dosimetric performance under such irradiation conditions of the novel SCDD dosimeter by comparison with commercially available dosimeters, namely a Si-D and a plane-parallel ionization chamber. Percentage depth dose curves, beam profiles and output factors (OFs) were measured. A good agreement among the dosimeters was observed in all of the performed measurements. As for the tubular applicators, two main effects were evidenced: (i) OFs larger than unity were measured for a number of field sizes and energies, with values up to about 1.3, that is an output 30% greater than that obtained at the 10 × 10 cm 2 reference field; (ii) for each diameter of the tubular applicator a noticeable increase of the OF values was observed with increasing beam energy, up to about 100% in the case of the smaller applicator. This OF behavior is remarkably different from what typically observed for small blocked fields having the same size and energy as those used in this study. OFs for tubular applicators depend considerably on the field size, so interpolation is unadvisable to predict the linear accelerator output for such applicators whereas reliable high-resolution detectors, as the
The purpose of this study was to compare the dosimetric properties of small field electron beams shaped by circular Cerrobend blocks and stainless steel tubular applicators. Percentage depth dose curves, beam profiles, and output factors of small‐size circular fields from 2 to 5 cm diameter, obtained either by tubular applicators and Cerrobend blocks, were measured for 6, 10, and 15 MeV electron beam energies. All measurements were performed using a PTW microDiamond 60019 premarket prototype. An overall similar behavior between the two collimating systems can be observed in terms of PDD and beam profiles. However, Cerrobend collimators produce a higher bremsstrahlung background under irradiation with high‐energy electrons. In such irradiation condition, larger output factors are observed for tubular applicators. Similar dosimetric properties are observed using circular Cerrobend blocks and stainless steel tubular applicators at lower beam energies. However, Cerrobend collimators allow the delivery of specific beam shapes, conformed to the target area. On the other hand, in high‐energy irradiation conditions, tubular applicators produce a lower bremsstrahlung contribution, leading to lower doses outside the target volume. In addition, the higher output factors observed at high energies for tubular applicators lead to reduced treatment times.PACS number: 87.53.Bn, 87.55.Qr, 87.56.Fc
Humans are exposed to ionizing radiations in medical radiodiagnosis and radiotherapy that cause oxidative damages and degenerative diseases. Airplane pilots, and even more astronauts, are exposed to a variety of potentially harmful factors, including cosmic radiations. Among the phytochemicals, phenols are particularly efficient in countering the oxidative stress. In the present study, different extracts obtained from plant food, plant by-products and dietary supplements, have been compared for their antioxidant properties before and after irradiation of 140 cGy, a dose absorbed during a hypothetical stay of three years in the space. All the dry extracts, characterized in terms of vitamin C and phenolic content, remained chemically unaltered and maintained their antioxidant capability after irradiation. Our results suggest the potential use of these extracts as nutraceuticals to protect humans from oxidative damages, even when these extracts must be stored in an environment exposed to cosmic radiations as in a space station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.