BackgroundPsoriasis is an immune‐mediated inflammatory disease in which the Th17 pathway is mainly involved. Systemic interventions with biologics that specifically block the Th17 pathway are effective to treat severe psoriasis. However, for efficient topical treatment, small molecules are more suitable than antibodies to penetrate and target epidermal keratinocytes, the key players in psoriasis. Celastrol, a well‐described triterpene, is present in low amounts in Tripterygium wilfordii roots. By using plant cell culture (PCC), we were able to boost Celastrol production in bioreactors. Here, we evaluated immune modulator effect of Celastrol enriched extract (CEE) in Th17/Th22 psoriasis induced in 2D and 3D human models in vitro in view of its dermatological usage.MethodsHuman CD4+ T cells (hCD4), Normal Human Epidermal Keratinocytes (NHEK), micro‐epidermis and reconstructed human epidermis (RHE) were preincubated with CEE and reference controls. Then, hCD4 were stimulated by anti‐[CD3/CD28] while others were stimulated by Th17/22 cytokines cocktails. Psoriasis biomarkers were assessed by ELISA (hCD4 and RHE), by RT‐qPCR (NHEK) or by ICH/ELISA (micro‐epidermis).ResultsIn 2D stimulated models (hCD4 and NHEK), CEE dose dependently inhibited, respectively, the expression of Th17 cytokines and psoriasis induced biomarkers. In 3D models (RHE and micro‐epidermis), IL‐8 expression was significantly reduced (RHE) and native phenotype was restored by CEE (micro‐epidermis).ConclusionThese results clearly showed that Th17/Th22 cytokines, main inflammatory parameters, and psoriasis associated key biomarkers were inhibited by CEE in both 2D and 3D human in vitro models. Therefore, skin homeostasis could be restored by these modulator effects. Moreover, this high added value CEE was obtained by an ecofriendly bioprocess in contrast to traditional roots extracts. This is the first time that a well‐defined CEE immune modulator has been proposed for psoriasis adjuvant care to reduce inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.