This paper presents a self-powered, active electronic interface for an energy harvesting system including a vibrationbased electromagnetic transducer. The transducer provides a peak voltage of 3.25 V when operated close to its mechanical resonance frequency (about 10.4 Hz) and the power converter has been designed to transfer the harvested energy to a storage capacitor. The circuit is a full-cycle inductive step-up ac/dc converter able to process every voltage pulse coming from the transducer; furthermore, it is supplied by the harvested energy, making the system fully autonomous. The interface has been designed exploiting an accurate model of the transducer in simulations. A printed circuit board version of the interface has been simulated and built to gather experimental results and validate the idea. The system demonstrated to be able to build a voltage across the storage capacitor, which is limited only by the safe operating area of the devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.