The small satellite ‘Galileo Galilei’ (GG) will test the universality of free fall and hence the weak equivalence principle which is the founding pillar of general relativity to 1 part in 1017. It will use proof masses whose atoms differ substantially from one another in their mass energy content, so as to maximize the chance of violation. GG will improve by four orders of magnitude the current best ‘Eöt-Wash’ tests based on slowly rotating torsion balances, which have been able to reach their thermal noise level. In GG, the expected violation signal is a relative displacement between the proof masses of ≃ 0.6 pm caused by a differential acceleration aGG ≃ 8 × 10−17 ms−2 pointing to the center of mass of the Earth as the satellite orbits around it at νGG ≃ 1.7 × 10−4 Hz. GG will fly an innovative acceleration sensor based on rapidly rotating macroscopic test masses weakly coupled in 2D which up-converts the signal to νspin ≃ 1 Hz, a value well above the frequency of natural oscillations of the masses relative to each other νd = 1/Td ≃ 1/(540 s). The sensor is unique in that it ensures high rotation frequency, low thermal noise and no attenuation of the signal strength (Pegna et al 2011 Phys. Rev. Lett. 107 200801). A readout based on a very low noise laser interferometry gauge developed at Jet Propulsion Laboratory (≃ 1 pm Hz−1/2 at 1 Hz demonstrated) allows the short integration time to be fully exploited. A full scale sensor with the same degrees of freedom and the same dynamical features as the one to fly in GG has been setup on ground (GGG). The proof masses of GGG are affected by acceleration and tilt noise acting on the rotating shaft because of ball bearings and terrain microseismicity (both absent in space). Overall, by means of appropriate 2D flexure joints, these noise sources have been reduced by a factor almost 105 down to a differential acceleration between the proof masses of ≃ 7 × 10−11 m s−2 (at 1.7 × 10−4 Hz up-converted by rotation to ≃ 0.2 Hz). The corresponding noise in the relative displacements of the proof masses, read by co-rotating capacitance bridges, is ≃ 180 pm, which is 300 times larger than the target in space. GGG error budget shows that it can reach a differential acceleration sensitivity aGGGgoal ≃ 8 × 10−16 m s−2, not limited by thermal noise. This value is only a factor 10 larger than what GG must reach in space to meet its target, and slightly smaller than the acceleration noise of the torsion balance. It can be achieved partly by means of weaker joints and an optimized mechanical design—so as to improve the attenuation factor—and partly by replacing the current ball bearings with much less noisy air bearings (also used in torsion balance tests) so as to reduce input noise. A laser gauge readout with noise level rlaser-ro ≃ 30 pm Hz−1/2 at 0.2÷3 Hz will be implemented.
Mechanical oscillators can be sensitive to very small forces. Low frequency effects are up-converted to higher frequency by rotating the oscillator. We show that for 2-dimensional oscillators rotating at frequency much higher than the signal the thermal noise force due to internal losses and competing with it is abated as the square root of the rotation frequency. We also show that rotation at frequency much higher than the natural one is possible if the oscillator has 2 degrees of freedom, and describe how this property applies also to torsion balances. In addition, in the 2D oscillator the signal is up-converted above resonance without being attenuated as in the 1D case, thus relaxing requirements on the read out. This work indicates that proof masses weakly coupled in 2D and rapidly rotating can play a major role in very small force physics experiments.
The integration time required by space experiments to perform high accuracy tests of the universality of free fall and the weak equivalence principle is a crucial issue. It is inversely proportional to the square of the acceleration to be measured, which is extremely small; the duration of the mission is a severe limitation and experiments in space lack repeatability. An exceedingly long integration time can therefore rule out a mission target. We have evaluated the integration time due to thermal noise from gas damping, Johnson noise and eddy currents-which are independent of the signal frequency-and to internal damping, which is known to decrease with increasing frequency. It is found that at low frequencies thermal noise from internal damping dominates. In the "Galileo Galilei" proposed space experiment to test the equivalence principle to 10(-17) the rapid rotation of the satellite (1 Hz) up-converts the signal to a frequency region where thermal noise from internal damping is lower than gas damping and only a factor 2 higher than Johnson noise, with a total integration time of 2.4 to 3.5 hours even in a very conservative estimate. With an adequate readout and additional care in reducing systematics the test could be improved by another order of magnitude, close to 10(-18), requiring a hundred times longer-still affordable-integration time of 10 to 14.6 days. mu SCOPE, a similar room temperature mission under construction by the French space agency to be launched in 2015, aims at a 10(-15) test with an estimated integration time of 1.4 days. Space tests using cold atoms and atom interferometry have been proposed to be performed on the space station (Q-WEP, to 10(-14)) and on a dedicated mission (STE-QUEST, to 10(-15) like mu SCOPE). In this case integration is required in order to reduce single shot noise. European Space Agency funded studies report an integration time of several months and a few years respectively
Using a novel CO 2 pulsed laser that presents high peak power (several hundreds of watts) together with high spectral purity, we have reinvestigated the CH 3 OD isotopomer of methanol as a source of far infrared laser emissions pumped by the 10P and 10HP CO 2 laser lines. Thirty-five new lines have been observed and characterized for wavelength, offset, relative polarization, optimum operation pressure and relative intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.