Previous reports suggest that exogenous nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. Rabbit facial nerve regeneration in 10-mm Silastic tubes prefilled with NGF was compared to cytochrome C (Cyt. C), bridging an 8-mm nerve gap. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than cytochrome-C-treated controls. Morphometric analysis at the midtube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and cytochrome-C-treated implants. However, when the number of myelinated fibers in 5-week regenerates were compared to their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than cytochrome-C--treated implants (46% vs. 18%, respectively). In addition, NGF-containing chambers reinnervated a higher percentage of myelinated axons in the distal transected neural stumps (49% vs. 34%). Behavioral and electrophysiologic studies demonstrated spontaneous and induced activities in the target muscles when approximately one third of the myelinated axons were recovered in the midchamber (1280 axons). Horseradish peroxidase (HRP) studies demonstrated retrograde axonal transport to the midchamber and proximal transected neural stump. PC12 bioassay demonstrated persistent NGF activity in the intrachamber fluids at 3 (5:1 dilution) and 5 (2:1 dilution) weeks of entubation. Electrophysiologic tests demonstrated a slow conduction velocity of a propagated electrical impulse (43.5 m/s-1 vs. 67 m/s-1) and shallow wide compound action potential. In wider defects (15-mm chambers) and longer entubation periods (7 weeks), no regeneration or NGF activity was seen. Therefore, exogenous NGF provides an early but limited neurotrophic effect on the regeneration of the rabbit buccal division of the facial nerve and a limited behavioral and physiological improvement in the target muscles.
Previous reports suggest that nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. We compared rabbit facial nerve regeneration in 10-mm silicone tubes prefilled with NGF or cytochrome C (Cyt C), bridging an 8-mm nerve gap, to regeneration of 8-mm autologous nerve grafts. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than Cyt C-treated controls. Morphometric analysis at the middle of the tube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and Cyt C-treated implants. However, when the numbers of myelinated fibers in 5-week regenerates were compared to those in their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than Cyt C-treated implants (46% versus 18%, respectively). The number of regenerating myelinated axons in the autologous nerve grafts at 5 weeks was significantly greater than the number of myelinated axons in the silicone tubes. However, in the nerve grafts the majority of the axons were found in the extrafascicular connective tissue (66%). The majority of these myelinated fibers did not find their way into the distal nerve stump. Thus, although the number of regenerating myelinated axons within the nerve grafts is greater than that of axons within silicone tube implants, functional recovery of autologous nerve graft repairs may not be superior to that of intubational repairs.
Antecedent priming lesions do not enhance axonal survival as determined by regenerating myelinated axonal counts. However, antecedent injuries enhance the efficiency of neural innervation of the affected mimetic musculature by increasing the number of myelinated intrafascicular neural regenerants in the cable graft and distal nerve stump. This is accomplished by two factors: increased perineural fibrosis and decreased intrafascicular myelin and axonal debris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.