As epidermal growth factor receptor (EGFR) has been reported to be a radiation response modulator, HER inhibitors are regarded to act as potential radiosensitisers. Our study examined the role of nimotuzumab and cetuximab both, the two monoclonal antibodies (mAbs) to EGFR, as radiosensitisers in a murine glioma model in vivo. Co-administration of both the antibodies with radiation increased the radiosensitivity of U87MG, resulting in a significant delay of subcutaneous (s.c.) tumour growth. Furthermore, the addition of antibodies to the radiation decreased brain tumour sizes and is inhibited by 40 -80% the increased tumour cell invasion provoked by radiotherapy, although promoted tumour cell apoptosis. Whereas nimotuzumab led to a reduction in the size of tumour blood vessels and proliferating cells in s.c. tumours, cetuximab had no significant antiangiogenic nor antiproliferative activity. In contrast, cetuximab induced a more marked inhibition of EGFR downstream signalling compared with nimotuzumab. Moreover, both antibodies reduced the total number of radioresistant CD133 þ cancer stem cells (CSCs). These results were encouraging, and showed the superiority of combined treatment of mAbs to EGFR and radiation over each single therapy against glioblastoma multiforme (GBM), confirming the role of these drugs as radiosensitisers in human GBM. In addition, we first showed the ability of mAb specifics against EGFR to target radioresistant glioma CSC, supporting the potential use in patients.
Epidermal growth factor receptor (EGFR) is frequently overexpressed in epithelial tumors and is associated with a poor prognosis. An increasing interest in developing anti-EGFR therapies has resulted in the evaluation of monoclonal antibodies with the capacity to bind to the EGFR, inhibiting EGFR-dependent cellular transformation. A differential toxicity and therapeutic effect in vivo are associated with the affinity and isotype of the molecule. In this study, we examined the biological activities of three monoclonal antibodies (MAbs) -- Ior egf/r3 (mouse IgG2a, 10(-9) M), Nimotuzumab (humanized IgG1, 10(-9) M), and Cetuximab (human/mouse chimeric IgG1, 10(-10) M) -- considering inhibition of cell proliferation, apoptosis, and complement-mediated cell death in squamous cell carcinoma A431 in vitro. All the antibodies bound to the EGFR on these cells, inhibiting the receptor phosphorylation, as measured by flow cytometry, inmunocytochemistry, and Western blot. Exposure to the different antibodies inhibited cell proliferation in culture in a range from 50 to 80% compared to controls. Furthermore, similar capabilities to induce either complement-mediated cytotoxicity (ranging between 70 and 90%) or a two-fold increase in the rate of apoptotic cells were found when tumor cells were exposed to the antibodies. These results suggest that the affinity between specific anti-EGFR antibodies and its receptor could affect, but not determine their biological activity at least in those cell lines that exhibit high sensitivity to withheld EGFR. Our findings also confirm previous evidences that blocking EGFR in A431 cells by means of antibodies significantly changes tumor cell biology by promoting apoptosis while decreasing tumor cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.