Purpose: Epidermal growth factor (EGF) might be a suitable immunotherapeutic target in nonŝ mall-cell lung cancer (NSCLC). Our approach consists of active immunotherapy with EGF. The aim of the study is to characterize the humoral response and its effects on signal transduction in relation with the clinical outcome. Experimental Design: Eighty NSCLC patients treated with first-line chemotherapy were randomized to receive the EGF vaccine or supportive care. EGF concentration in sera, anti-EGF antibodies and their capacity to inhibit the binding between EGF/EGF receptor (EGFR), and the EGFR phosphorylation were measured. Results: Seventy-three percent of vaccinated patients developed a good antibody response, whereas none of the controls did. In good antibody-responder patients, self EGF in sera was significantly reduced. In 58% of vaccinated patients, the post-immune sera inhibited EGF/EGFR binding; in the control group, no inhibition occurred. Post-immune sera inhibited the EGFR phosphorylation whereas sera from control patients did not have this capacity. Good antibodyresponder patients younger than 60 years had a significantly better survival. A high correlation between anti-EGF antibody titers, EGFR phosphorylation inhibition, and EGF/EGFR binding inhibition was found. There was a significantly better survival for vaccinated patients that showed the higher capacity to inhibit EGF/EGFR binding and for those who showed an immunodominance by the central region of EGF molecule. Conclusions: Immunization with the EGF vaccine induced neutralizing anti-EGF antibodies capable of inhibiting EGFR phosphorylation. There was a significant positive correlation between antibody titers, EGF/EGFR binding inhibition, immunodominance of anti-EGF antibodies, and survival in advanced NSCLC patients.
Vaccination with five doses of EGF vaccine is safe and immunogenic. Montanide ISA 51 increased the percentage of GAR. There is a direct relationship between anti-EGF antibody titers and immune response duration with survival time.
Distribution of lymphocyte subsets was influenced by cancer and chemotherapy in NSCLC patients. CD19 + B cells decrease by cancer disease and not by chemotherapy, and CD28- subpopulations increase by chemotherapy and not by cancer. The proportion of CD8 + CD28- T cells, CD4+ T cells and CD4/CD8 ratio can be used as predictive biomarkers of CIMAvax-EGF efficacy in NSCLC patients and thereby could, be a useful tool for a personalized treatment.
Epidermal growth factor receptor (EGFR) is frequently overexpressed in epithelial tumors and is associated with a poor prognosis. An increasing interest in developing anti-EGFR therapies has resulted in the evaluation of monoclonal antibodies with the capacity to bind to the EGFR, inhibiting EGFR-dependent cellular transformation. A differential toxicity and therapeutic effect in vivo are associated with the affinity and isotype of the molecule. In this study, we examined the biological activities of three monoclonal antibodies (MAbs) -- Ior egf/r3 (mouse IgG2a, 10(-9) M), Nimotuzumab (humanized IgG1, 10(-9) M), and Cetuximab (human/mouse chimeric IgG1, 10(-10) M) -- considering inhibition of cell proliferation, apoptosis, and complement-mediated cell death in squamous cell carcinoma A431 in vitro. All the antibodies bound to the EGFR on these cells, inhibiting the receptor phosphorylation, as measured by flow cytometry, inmunocytochemistry, and Western blot. Exposure to the different antibodies inhibited cell proliferation in culture in a range from 50 to 80% compared to controls. Furthermore, similar capabilities to induce either complement-mediated cytotoxicity (ranging between 70 and 90%) or a two-fold increase in the rate of apoptotic cells were found when tumor cells were exposed to the antibodies. These results suggest that the affinity between specific anti-EGFR antibodies and its receptor could affect, but not determine their biological activity at least in those cell lines that exhibit high sensitivity to withheld EGFR. Our findings also confirm previous evidences that blocking EGFR in A431 cells by means of antibodies significantly changes tumor cell biology by promoting apoptosis while decreasing tumor cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.