We consider the totally asymmetric exclusion process in discrete time with generalized updating rules. We introduce a control parameter into the interaction between particles. Two particular values of the parameter correspond to known parallel and sequential updates. In the whole range of its values the interaction varies from repulsive to attractive. In the latter case the particle flow demonstrates an apparent jamming tendency not typical for the known updates. We solve the master equation for N particles on the infinite lattice by the Bethe ansatz. The non-stationary solution for arbitrary initial conditions is obtained in a closed determinant form.
The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.