In this article, results of the comparative analysis and assessment of resistance of two grape cultivars Vostorg and Muscat blanc against downy mildew disease (Plasmopara viticola) with or without the symbiote Saccharomyces cerevisiae (vine yeast) were shown. The highly resistant cultivar Vostorg with yeast pre-treatment demonstrated a high defensive capability to the pathogen due to the fast immune response. On the first day after inoculation with downy downy mildew the rapid increase in the hydrogen peroxide, which is involved the first step of the grape’s defense system induction, was observed. At the same time, the upregulation of the relative expression of the PR2 protein (β-1,3-gluconase), a key gene involved in the plant’s resistance to pathogens. The oxidative burst was not detected in the susceptible cultivar Muscat blanc for the couple of hours after inoculation with downy mildew pathogen. The significant increase of the total phenols content and expression of stilbene synthase, which is an enzyme involved in the synthesis of phytoalexins, was observed in leaves of Muscat blanc. It was shown that pre-treatment of grape leaves with natural symbiote S. cerevisiae enhanced the immune response of the resistant cultivar Vostorg and inducted phytoalexins synthesis in the susceptible cultivar Muscat blanc.
An influence of different sucrose concentrations in the culture media on the photosynthetic parameters, photosynthetic apparatus related genes expression, oxidative processes and acclimation of grape plants cultured in vitro was examined in this article. An increase of the sucrose concentration in the culture media resulted in a reduced expression of several photosynthetic genes. The most effective functioning of the photosynthetic apparatus was discovered by a decreased amount of surcose in culture media. An increase of the sucrose concentration in the culture media disrupts pigments synthesis, particularly carotenoids, which can be a cause of the secondary oxidative stress formation and grape plants growth reduction during acclimation.
Background. Various approaches are used for identification of the most resistant fruit crop cultivars, including the analysis of different physiological and biochemical indicators. In Krasnodar Territory, Russia, one of the major stressors in summer is the hydrothermal stress. Drought and heat lead to an oxidative stress, as reactive oxygen species are produced in plant cells. Plants respond to oxidative damage by activating antioxidant enzymes, such as superoxide dismutase, catalase, and various peroxidases. Peroxidase is able to decompose hydrogen peroxide. Peroxidase activity was calculated under natural summertime changes in the hydrothermal pattern (control) and in simulated high-temperature conditions.Materials and methods. Three apple cultivars of Russian breeding, ‘Fortuna’, ‘Soyuz’ and ‘Prikubanskoe’, and cv. ‘Ligol’ of Polish origin were studied. In the summers of 2018–2019, their leaf samples were analyzed to assess peroxidase activity and its isozyme composition under control and stress conditions. Native electrophoresis in polyacrylamide gel was used for separation of peroxidase isoforms. Malondialdehyde content was measured to identify oxidative stress levels in apple leaves.Results. The tested indicators demonstrated a high degree of heterogeneity induced by both cultivar specificity and seasonal weather dynamics. Peroxidase isoforms with a molecular weight of 70 to 60 kDa, characterized by the maximum level of variability (1–4 isoforms), were isolated. Two other groups included 1–3 isoforms with a molecular weight of ~130–100 kDa, and one with a molecular weight of ~55 kDa. The highest enzyme activity was found in cvs. ‘Fortuna’ and ‘Soyuz’ in July 2018, the hottest month during the period of research. Under simulated conditions, the triploid cultivar ‘Soyuz’ was least susceptible to the stress impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.