Zebrafish is one of the most used vertebrate model organisms in molecular and developmental biology, recently gaining popularity also in medical research. However, very little work has been done to assess zebrafish as a model species in nutritional studies in aquaculture in order to utilize the methodological toolbox that this species represents. As a starting point to acquire some baseline data for further nutritional studies, growth of a population of zebrafish was followed for 15 weeks. Furthermore, whole body proteome was screened during development by means of bi-dimensional gel electrophoresis and mass spectrometry. Fish were reared under best practice laboratory conditions from hatching until 103 days post-fertilization (dpf) and regularly fed ad libitum with Artemia nauplii from 12 dpf. A growth burst occurred within 9-51 dpf, reaching a plateau after 65 dpf. Fork length and body weight were significantly lower in males than in females from 58 dpf onwards. Proteomics analysis showed 28 spot proteins differently expressed through development and according to sex. Of these proteins, 20 were successfully identified revealing proteins involved in energy production, muscle development, eye lens differentiation, and sexual maturation. In summary, zebrafish exhibited a rapid growth until approximately 50 dpf, when most individuals started to allocate part of the dietary energy intake for sexual maturation. However, proteomic analysis revealed that some individuals reached sexual maturity earlier and already from 30 dpf onwards. Thus, in order to design nutritional studies with zebrafish fed Artemia nauplii, it is recommended to select a period between 20 and 40 dpf, when fish allocate most of the ingested energy for non-reproductive growth purposes.
early on-growing of cobia because at higher temperatures the digestion efficiency decrease being one of the causes for a lower growth.
This study aimed to determine the impact of elevated temperature combined with different levels of dietary methionine concentrations on feed intake (FI) and brain expression of selected neuropeptides and one receptor involved in appetite control in juvenile cobia (approximately 3.7 g body weight). The genes studies were neuropeptide y, npy; agouti-related protein, agrp; cocaine- and amphetamine-regulated transcript, cart; cholecystokinin, cck and melanocortin 4 receptor; mc4r. The cobia were reared at typical sea water temperature in Vietnam (30 °C) and elevated temperature (34°C; selected as one of the predicted scenarios of climate change). The fish were fed diets with different levels of methionine: deficient (M9; 9.1 g/kg), sufficient (M12; 12.8 g/kg) and surplus (M16, 16.8 g/kg) for 6 weeks (triplicate tanks per treatment). Both dietary methionine concentration and temperature affected FI in cobia. Dietary methionine deficiency (i.e., M9) and elevated temperature reduced FI in cobia. Temperature significantly influenced the mRNA expression of agrp, cart, cck and mc4r. Expression of the orexigenic neuropeptide npy was consistently higher before the meal than after the meal for all diets and at both temperatures. At 30°C, prefeeding levels of npy correlated with both increased methionine levels and FI. The interaction between dietary methionine and temperature on the levels of brain npy expression was significant (P<0.05). There was higher brain expression of agrp, cart and cck in cobia at 34°C than in fish at 30°C, which was correlated with a lower FI. In conclusion, both feeding, temperature and/or dietary methionine levels affected the brain expression of npy and agrp, cart, cck and mc4r. This suggests that these neuropeptides as well as the mc4r receptor are actively involved in adjusting feed intake to compensate for changing energetic demands, as well as metabolic adjustments due to the variable availability of methionine at elevated temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.