Despite the recent progress in the production of inert diets for fish larvae, feeding of most species of interest for aquaculture still relies on live feeds during the early life stages. Independently of their nutritional value, live feeds are easily detected and captured, due to their swimming movements in the water column, and highly digestible, given their lower nutrient concentration (water content>80%). The present paper reviews the main types of live feeds used in aquaculture, their advantages and pitfalls, with a special emphasis on their nutritional value and the extent to which this can be manipulated. The most commonly used live feeds in aquaculture are rotifers (Brachionus sp.) and brine shrimp (Artemia sp.), due to the existence of standardized cost‐effective protocols for their mass production. However, both rotifers and Artemia have nutritional deficiencies for marine species, particularly in essential n‐3 highly unsaturated fatty acids (HUFA, e.g., docosahexaenoic acid and eicosapentaenoic acid). Enrichment of these live feeds with HUFA‐rich lipid emulsions may lead to an excess dietary lipid and sub‐optimal dietary protein content for fish larvae. In addition, rotifers and Artemia are likely to have sub‐optimal dietary levels of some amino acids, vitamins and minerals, at least for some species. Several species of microalgae are also used in larviculture. These are used as feed for other live feeds, but mostly in the ‘green water’ technique in fish larval rearing, with putative beneficial effects on feeding behaviour, digestive function, nutritional value, water quality and microflora. Copepods and other natural zooplankton organisms have also been used as live feeds, normally with considerably better results in terms of larval survival rates, growth and quality, when compared with rotifers and Artemia. Nonetheless, technical difficulties in mass‐producing these organisms are still a constraint to their routine use. Improvements in inert microdiets will likely lead to a progressive substitution of live feeds. However, complete substitution is probably years away for most species, at least for the first days of feeding.
Despite considerable progress in recent years, many questions regarding fish larval nutrition remain largely unanswered, and several research avenues remain open. A holistic understanding of the supply line of nutrients is important for developing diets for use in larval culture and for the adaptation of rearing conditions that meet the larval requirements for the optimal presentation of food organisms and/or microdiets. The aim of the present review is to revise the state of the art and to pinpoint the gaps in knowledge regarding larval nutritional requirements, the nutritional value of live feeds and challenges and opportunities in the development of formulated larval diets.
Individual differences in physiological and behavioural responses to stressors are increasingly recognised as adaptive variation and thus raw material for evolution and fish farming improvements including selective breeding. Such individual variation has been evolutionarily conserved and is present in all vertebrate taxa including fish. In farmed animals, the interest in consistent trait associations, that is coping styles, has increased dramatically over the last years because many studies have demonstrated links to performance traits, health and disease susceptibility and welfare. This study will review (i) the main behavioural, neuroendocrine, cognitive and emotional differences between reactive and proactive coping styles in farmed fish; (ii) the methodological approaches used to identify coping styles in farmed fish, including individual (group) mass-screening tests; and (iii) how knowledge on coping styles may contribute to improved sustainability of the aquaculture industry, including welfare and performance of farmed fish. Moreover, we will suggest areas for future research, where genetic basis (heritability/ epigenetic) of coping styles, and the neuroendocrine mechanisms behind consistent as well as flexible behavioural patterns are pinpointed as central themes. In addition, the ontogeny of coping styles and the influence of age, social context and environmental change in coping styles will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.