Transcription factors inhibit or assist RNA polymerases in the initiation and maintenance of transcription; however, the cell specific expression and roles of transcription factors within bovine ovarian follicles during development are unknown. The aim of present study was to determine if the expression of transcription factors in theca and granulosa cells differ between the dominant and the largest subordinate follicles at different stages of the follicle wave. We used a bovine cDNA microarray to screen granulosa and theca cells from dominant and subordinate follicles for differential expression of genes coding for transcription factors. Expression was confirmed using reverse transcription polymerase chain reaction and differences in mRNA abundance further examined at Emergence, Selection and Dominance stages of the follicle wave. We have identified five genes encoding for transcription factors that have not been previously described in developing follicles with greater mRNA abundance in subordinate compared to dominant follicles. The genes (and their putative roles) are CEBP-beta (responsible for luteinization), SRF (cell survival), FKHRL1 (stimulates apoptosis), NCOR1 (modulation of the actions of the oestradiol receptor) and Midnolin (control of development via regulation of mRNA transport in cells).
Follicle development is regulated by the interaction of endocrine and intrafollicular factors, as well as by numerous intracellular pathways, which involves the transcription of new genes, although not all are known. The aim of the present study was to determine the expression of a set of unknown genes identified by bovine cDNA microarray analysis in theca and granulosa cells of dominant and subordinate follicles, collected at a single stage of the first follicular wave using quantitative real-time polymerase chain reaction. Differences were further examined at three stages of the follicular wave (emergence, selection and dominance) and bioinformatics tools were used to identify these originally unknown sequences. The suggested name function and proposed role for the novel genes identified are as follows: MRPL41 and VDAC2, involved in apoptosis (dominant follicle development); TBC1D1 stimulates cell differentiation (growth associated with dominant follicle selection and development); STX7, promotes phagocytosis of cells (subordinate follicle regression); and SPC22 and EHD3, intracellular signalling (subordinate follicle regression). In conclusion, we have identified six novel genes that have not been described previously in ovarian follicles that are dynamically regulated during dominant follicle development and presumably help mediate intracellular signalling, cell differentiation, apoptosis and phagocytosis, events critical to follicular development.
Fertility in cattle is a major component of many agricultural enterprises and there is pressure to devise methods to improve this. A number of approaches are ongoing, one of which is to better understand the cellular and molecular events of the development of reproductive tissues and to use these as targets for developing new strategies. Microarray technologies now allow us the potential to determine the transcriptional profile of expressed genes in a given tissue. This review focuses on the types of microarrays available for studies in cattle and concludes that genes associated with one or more of the cellular processes of cell survival/death, intracellular signalling, transcription and translation, cell division and proliferation and cellular metabolism are the main transcriptional pathways that control the development of ovarian follicles, oocytes, early embryos and the uterine endometrium about the time of the establishment of pregnancy.
Forde N, Mihm M, Canty MJ, Zielak AE, Baker PJ, Park S, Lonergan P, Smith GW, Coussens PM, Ireland JJ, Evans ACO. Differential expression of signal transduction factors in ovarian follicle development: a functional role for betaglycan and FIBP in granulosa cells in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.