In the local Universe, most galaxies are dominated by stars, with less than ten per cent of their visible mass in the form of gas. Determining when most of these stars formed is one of the central issues of observational cosmology. Optical and ultraviolet observations of high-redshift galaxies (particularly those in the Hubble Deep Field) have been interpreted as indicating that the peak of star formation occurred between redshifts of 1 and 1.5. But it is known that star formation takes place in dense clouds, and is often hidden at optical wavelengths because of extinction by dust in the clouds. Here we report a deep submillimetre-wavelength survey of the Hubble Deep Field; these wavelengths trace directly the emission from dust that has been warmed by massive star-formation activity. The combined radiation of the five most significant detections accounts for 30-50 per cent of the previously unresolved background emission in this area. Four of these sources appear to be galaxies in the redshift range 2 < z < 4, which, assuming these objects have properties comparable to local dust-enshrouded starburst galaxies, implies a star-formation rate during that period about a factor of five higher than that inferred from the optical and ultraviolet observations. Recent years have seen the first meaningful attempts to determine the global star-formation history of the Universe, using the combined information provided by deep redshift surveys (for example, the Canada France Redshift Survey 1 ) reaching z Ϸ 1, and the statistics of Lyman-limit galaxies 2 at higher redshifts in, for example, the Hubble Deep Field (HDF) 3-5 . The results 6 imply that the starformation and metal-production rates were about 10 times greater at z Ϸ 1 than in the local Universe, that they peaked at a redshift in the range z Ϸ 1-1:5, and that they declined to values comparable to those observed at the present day at z Ϸ 4.These conclusions, derived from optical-ultraviolet data, may however be misleading, because the absorbing effects of dust within distant galaxies undergoing massive star-formation may have distorted our picture of the evolution of the high-redshift Universe in two ways. First, the star-formation rate (SFR) in known highredshift objects is inevitably underestimated unless some correction for dust obscuration is included in deriving the rest-frame ultraviolet luminosity. Second, it is possible that an entire population of heavily dust-enshrouded high-redshift objects, as expected in some models of elliptical galaxy formation 7 , have gone undetected in the optical-ultraviolet surveys. The extent of the former remains controversial 8-11 , while the possibility of the latter has until now been impossible to investigate. Submillimetre cosmologyAt high redshifts (z Ͼ 1), the strongly-peaked far-infrared radiation emitted by star-formation regions in distant galaxies is redshifted into the submillimetre waveband, and the steep spectral index of this emission on the long-wavelength side of the peak, at l Ϸ 100 m in the rest-frame, result...
We present illustrative models for the UV to millimetre emission of starburst galaxies which are treated as an ensemble of optically thick giant molecular clouds (GMCs) centrally illuminated by recently formed stars. The models follow the evolution of the GMCs owing to the ionization‐induced expansion of the H ii regions and the evolution of the stellar population within the GMC according to the Bruzual & Charlot stellar population synthesis models. The effect of transiently heated dust grains/PAHs on the radiative transfer, as well as multiple scattering, is taken into account. The expansion of the H ii regions and the formation of a narrow neutral shell naturally explain why the emission from PAHs dominates over that from hot dust in the near‐ to mid‐infrared, an emerging characteristic of the infrared spectra of starburst galaxies. The models allow us to relate the observed properties of a galaxy to its age and star formation history. We find that exponentially decaying 107–108 yr old bursts can explain the IRAS colours of starburst galaxies. The models are also shown to account satisfactorily for the multiwavelength data on the prototypical starburst galaxy M82 and NGC 6090, a starburst galaxy recently observed by ISO. In M82 we find evidence for two bursts separated by 107 yr. In NGC 6090 we find that at least part of the far‐infrared excess may be due to the age of the burst (6.4×107 yr). We also make predictions about the evolution of the luminosity of starbursts at different wavelengths which indicate that far‐infrared surveys may preferentially detect older starbursts than mid‐infrared surveys.
Using the large multiwavelength data set in the Chandra/SWIRE Survey (0.6 deg 2 in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGNs, estimate a lower limit to their surface density, and characterize their multiwavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain (1) five X-ray sources with hard X-ray spectra and column densities k10 24 cm À2 and (2) 120 infrared sources with red and AGN-dominated infrared SEDs. We estimate a surface density of at least 25 Compton-thick AGNs deg À2 detected in the infrared in the Chandra/ SWIRE field, of which $40% show distinct AGN signatures in their optical/near-infrared SEDs, the remaining being dominated by the host galaxy emission. Only $33% of all Compton-thick AGNs are detected in the X-rays at our depth [F(0:3 8 keV) > 10 À15 ergs cm À2 s À1 ]. We report the discovery of two sources in our sample of Comptonthick AGNs, SWIRE J104409.95+585224.8 (z ¼ 2:54) and SWIRE J104406.30+583954.1 (z ¼ 2:43), which are the most luminous Compton-thick AGNs at high z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities, and black hole masses.
(Abridged) We examine the power source of 41 local Ultraluminous Infrared Galaxies using archival infrared and optical photometry. We fit the observed Spectral Energy Distributions (SEDs) with starburst and AGN components; each component being drawn from a family of templates. We find all of the sample require a starburst, whereas only half require an AGN. In 90% of the sample the starburst provides over half the IR emission, with a mean fractional luminosity of 82%. When combined with other galaxy samples we find that starburst and AGN luminosities correlate over 6 decades in IR luminosity suggesting that a common factor governs both luminosities, plausibly the gas masses in the nuclear regions. We find that the mid-IR 7.7 micron line-continuum ratio is no indication of the starburst luminosity, or the fractional AGN luminosity, and therefore that this ratio is not a reliable diagnostic of the power source in ULIRGs. We propose that the scatter in the radio-IR correlation in ULIRGs is due to a skewed starburst IMF and/or relic relativistic electrons from a previous starburst, rather than contamination from an obscured AGN. We show that most ULIRGs undergo multiple starbursts during their lifetime, and by inference that mergers between more than two galaxies may be common amongst ULIRGs. Our results support the evolutionary model for ULIRGs proposed by Farrah et al 2001, where they can follow many different evolutionary paths of starburst and AGN activity in transforming merging spiral galaxies into elliptical galaxies, but that most do not go through an optical QSO phase. The lower level of AGN activity in our local sample than in z~1 HLIRGs implies that the two samples are distinct populations. We postulate that different galaxy formation processes at high-z are responsible for this difference.Comment: 24 pages, 8 figures. Accepted for publication in MNRA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.