The aim of this paper is to show how geometric and algebraic approaches lead us to a new symplectic elementary transformations: the 2-D symplectic Householder transformations. Their features are studied in details. Their interesting properties allow us to construct a new algorithm for computing a SR factorization. This algorithm is based only on these 2-D symplectic Householder transformations. Its new features are highlighted. The study shows that, in the symplectic case, the new algorithm is the corresponding one to the classical QR factorization algorithm, via the Householder transformations. Some numerical experiments are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.