Reducing the diameter of the cathode hole in a plane anode-hollow cathode geometry to 200 µm has allowed us to generate direct current discharges in argon at atmospheric pressure. Up to pressure times cathode hole diameter (pD) values of approximately 5 Torr cm, and at sub-mA currents, glow discharges (predischarges) are observed with a shape which is determined by the vacuum electric field. In the same pD range, but at higher currents of up to approximately 4 mA, the discharges are of the hollow cathode discharge type. At pD values exceeding 5 Torr cm the predischarges turn into surface discharges along the mica spacer between the electrodes. At currents >4 mA filamentary, pulsed discharges are observed. Qualitative information on the electron energy distribution in the microdischarges has been obtained by studying the VUV emission from ionized argon atoms and the argon excimer radiation at 130 nm. The results of the spectral measurements indicate the presence of a relatively large concentration of electrons with energies >15 eV over the entire pressure range. The fact that the current-voltage characteristic of the microdischarges has a positive slope over much of the current range where excimer radiation is emitted indicates the possibility of forming arrays of these discharges and using them in flat panel excimer lamps.
Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ∼400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ∼2% for argon fluoride.
An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO 2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 10 11 cm −3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 10 13 cm −3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.
A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V for xenon discharges, at current levels on the order of mA. The resistive current–voltage characteristics of the microdischarges indicate the possibility to form arrays for direct current, flat panel excimer lamps.
By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 μm, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6% and 9% of the input electrical power. The possibility to form arrays of these discharges allows the generation of flat panel VUV lamps with radiant emittances exceeding 50 W/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.