14C- and 15N-labelled wheat straw, and tops or roots of a pasture legume (either Medicago littoralis or Trifolium subterraneum) were incorporated into topsoils at 12 field sites in southern Australia. These sites were representative of soil types widely used for wheat growing in each region. The soils varied markedly in their physical and chemical properties (e.g. pH, texture and organic matter content). Based on amounts of residual I4C (averaged for all sites), the legume tops decomposed more extensively than did wheat straw, especially soon after incorporation. To a lesser extent the legume tops decomposed more extensively than legume roots, and T. subterraneum tops more than M. littoralis tops; root decomposition for both legumes was similar. For example, after 1 year, the residual organic 14C from wheat straw, M. littoralis tops, T. subterraneum tops and legume roots accounted for 48%, 41%, 38% and 54% of their respective inputs. After two years, residual 14C of wheat straw accounted for 30% of the input. Differences in decomposition due to climate and soil properties were generally small, but at times were statistically significant; these differences related positively with rainfall and negatively with soil clay content, but showed no relationship with pH or soil organic C and N. Some N was mineralized from all plant materials, the greatest from legume tops, the least from wheat straw. After 1 year, residual organic 15N accounted for 56%, 63% and 78% respectively of input l5N from legume tops and roots and from wheat straw. The influence of climate and soil properties on amounts of residual organic I5N was small and generally was consistent with those found for residual 14C. AS an exception, the residual organic 15N from wheat straw was negatively related to soil organic N levels, whereas residual I5N of legume tops and roots and residual 14C of all plant materials were not influenced by soil organic matter levels. These results are discussed in terms of the turnover of N in soils amended with isotope labelled plant materials of different available C:N ratios.
This paper gives a broad overview of the distribution and agricultural importance of sodic soils in Victoria. Sodic soils are estimated to occupy at least 13.4 Mha, representing at least 73% of Victoria's agricultural land. Most of this land is used for dryland farming; about 85% of the cropped land and 66% of the land sown to dryland pastures occurs on sodic soils. The largest sodicity class is 'alkaline sodic', dominated by a diverse range of soils (red duplex, yellow duplex, calcareous earths and self-mulching cracking clays). Alkaline sodic soils comprise half of the total agricultural land area, or about 24% of the area of land currently used for dryland cropping and 21% of the land under sown pasture. Land degradation problems are recognized as affecting most agricultural land in Victoria, and to be substantially limiting its productivity. The nature, extent and severity of the various forms of land degradation are a consequence of both intrinsic soil properties and of management practices. There is an urgent need to improve current farming practices to prevent further deterioration of the soil resource. Existing knowledge of the behaviour of sodic soils under both dryland and irrigated agriculture is reviewed. It is concluded that substantial gains in productivity are possible, but will require effective collaboration between soil scientists, agronomists, and land managers. Collation and integration of current knowledge on the properties and management of sodic soils in Victoria, and the acquisition of additional relevant information by targeted long-term research is required. Key issues for future research are identified.
Three experiments, begun in successive years, were conducted between 1974 and 1979 in north-eastern Victoria to investigate the effects of rotating wheat (cv. Olympic) and 'sweet' lupins (Lupinus angustifolius cv. Uniharvest) on crop yields, soil fertility and crop diseases. The grain yield of continuous wheat was 2.58 t/ha and of continuous lupins 0.66 t/ha (P<0.05). Wheat, grown after a lupin crop, yielded 750 kg/ha more than wheat after wheat, and a second wheat crop, after lupins, yielded 420 kg/ha more than a third successive wheat crop. Lupins, grown after wheat, yielded 50-165% more than lupins after lupins. Grain nitrogen of wheat was significantly increased after lupins (P<0.01). Differences in soil mineral nitrogen were apparent ten weeks after sowing, with mean nitrogen levels of 37 and 55 kg/ha under wheat and lupins, respectively. Soil mineral nitrogen (0-20 cm) was consistently greater after lupins than after wheat (P<0.01) when measured just before seeding the succeeding crop. Overall, mean accretion of mineral nitrogen under lupins was 4 1 kg/ha.year. Residual nitrogen from lupins, after one succeeding wheat crop had been grown, was also evident (mean 23 kg/ha). Crop rotation influenced the incidence of crop diseases in wheat and lupins. Lupins after lupins suffered severely from brown leaf spot (Pleiochaeta setosa), up to 63% of plants being infected compared with only 18% after wheat. Disease incidence (mainly Gaeumannomyces graminis) in wheat increased from less than 1% in the first year of cropping, to 36% infection in year 3. When wheat was grown after lupins, disease incidence was negligible.
Dryland salinity, caused largely by insufficient water use of annual crops and pastures, is increasing in southern Australia. A field experiment in north-eastern Victoria (average annual rainfall 600 mm) assessed the potential for lucerne grown in rotation with crops to reduce the losses of deep drainage compared with annual crops and pasture. Soil under lucerne could store 228 mm of water to 1.8 m depth. This compared with 84 mm under continuous crop (to 1.8 m depth), except in 1997–98 where crop dried soil by 162 mm. Between 1.8 and 3.25 m depth lucerne was able to create a soil water deficit of 78 mm. The extra water storage capacity was due to both the increased rooting depth and increased drying abiliy of lucerne within the root-zone of the annual species. Large drainage losses occurred under annuals in 1996 and small losses were calculated in 1997 and 1999, with no loss in 1998. Averaged over 1996–1999, drainage under annual crops was 49 mm/year (maximum 143 mm) and under annual pastures 35 mm/year (maximum 108 mm). When the extra soil water storage under lucerne was accounted for, no drainage was measured under this treatment in any year. Following 2 years of lucerne, drainage under subsequent crops could occur in the second crop. However, with 3 or 4 years of lucerne, 3–4 crops were grown before drainage loss was likely. Our calculations suggest that in this environment drainage losses are likely to occur under annual species in 55% of years compared with 6% of years under lucerne. In wet years water use of lucerne was higher than for crops due to lucerne’s ability to use summer rainfall and dry soil over the summer–autumn period. During the autumn–winter period crop water use was generally higher than under lucerne. The major period of increased soil water extraction under lucerne was from late spring to midsummer, with additional drying from deeper layers until autumn. Under both lucerne and crops, soil dried progressively from upper to lower soil layers. Short rotations of crops and lucerne currently offer the most practical promise for farmers in cropping areas in southern Australia to restore the water balance to a level which reduces the risk of secondary salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.