We describe relationships between atmospheric CO2 concentration variations and CO2 source-sink distributions, at two important scales between the single plant and the whole earth: the vegetation canopy and the atmospheric planetary boundary layer. For both these scales, it is shown how knowledge of turbulence and scalar dispersion can be applied to infer CO2 source-sink distributions or fluxes from concentration measurements. At the canopy scale, the turbulent transfer of CO2 and other scalars is non-diffusive close to any point source or sink in the canopy, but diffusive at greater distances. This distinction leads to a physically tenable description of turbulent transfer, and thence to an 'inverse method' for finding the vertical profiles of sources and sinks in the canopy from measured concentration profiles. The method is tested with data from a wheat crop. At the scale of the planetary boundary layer, we consider the daily CO2 concentration drawdown (the depression of the near-surface CO2 concentration below the free-atmosphere value) of typically 20-40 ppm. This is determined by both the regionally averaged CO2 uptake at the surface and the growth of the daytime convective boundary layer (CBL). It is shown that, for a column of air which fills the CBL and is moved across the landscape by the mean wind, the net cumulative surface CO2 flux (in mol m-2) is given to a good approximation by h(t)[Cm(t) - C+]/V, where h(t) is CBL depth, Cm(t) the CO2 concentration in the CBL column in mol mol-1, C+ the concentration above the CBL, V the molar volume and time t is measured from the time at which Cm = C+ in the morning, typically about 0800 hours local time. The resulting CO2 flux estimates are regionally averaged over the trajectory followed by the column. This 'CBL budget method' for inferring surface fluxes is compared with direct measurements of CO2 fluxes, with satisfactory results. The technique has application to scalars other than CO2.
The paper considers the theory and application of budget techniques for regional scalar flux estimation using the daytime convective boundary layer (CBL) and the nocturnal boundary layer (NBL). CBL techniques treat the well mixed layer of air between heights of, say, 100 m and 1000 m as an integrator of surface fluxes along the path of a column of air moving over the landscape. They calculate the average surface flux from the scalar concentration in and above the mixed layer, and the CBL height. The flux estimates are averaged over regions of 10-10'* km^ extending 10 to 100 km upwind.An integral form of the CBL budget is used to estimate daily regional rates of COj uptake and evaporation from three data sets. There was plausible agreement between the estimates and locally measured fluxes. CBL budgets have great potential for estimating regional scalar fluxes, but there is an urgent need for validation through direct measurements of fluxes and budget parameters.NBL budgets are useful when low-level, radiative inversions inhibit vertical mixing. Surface scalar fluxes can then be estimated from the rate of concentration change below the inversion. An example application for estimating the nocturnal CO2 flux is given. While simple in concept, NBL budgets are more difficult to apply in practice because of the unpredictability of the depth of the layer and sometimes, its absence altogether. On the other hand, the depth of the atmospheric mixing chamber is better defined, few assumptions are required and the concentration changes usually will be larger and hence more easily detectable than in CBL budgetting.
The rate of acidification under wheat in south-eastern Australia was examined by measuring the fluxes of protons entering and leaving the soil, using the theoretical framework of Helyar and Porter (1989). Monthly proton budgets were estimated for the root zone (0-90 cm layer) and for the 0-25 and 25-90 cm layers. After an annual cycle, the root zone was alkalinized by 0.5 to 3.1 kmol OH-ha-1. The alkalinity originated from the mineralization of the organic anions contained in the organic matter. The budget was near neutrality in the 0-25 cm layer (range: -1 . 0 to 1.4 kmol H + ha-l), whereas there was net alkalinization in the 25-90 cm layer (1.7 to 2.3 kmol O H -ha-a). In the 0-25 cm layer, the acidity produced in autumn by mineralization of organic nitrogen was counterbalanced by the alkalinity released from crop residues. The main acidifying factor in this layer was leaching of NO~-during early winter (2.4 kmol H + ha-1). Nitrate added through leaching was the main alkalinizing factor in the 25-90 cm layer, as added NO~-was taken up by the roots or denitrified in this layer. Urea fertilization had almost no effect on the rate of acidification, as little NO 3 was leached out of the root zone. The factors acidifying the soil under wheat were limited in this environment because of the small amount of NO 3 leached and the retention of the crop residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.