The application of cantilevered structures as check valves or flow sensors can provide new possibilities towards the integration of accurate sample preparation systems within a lab-on-a-chip. The cantilevers presented in this paper act as flaps enclosed within a channel in a direction perpendicular to the flow. This orientation allows simpler designs and easier integration of the valve or flow sensor within the microfluidic network. The cantilevers have been embedded in a microfluidic channel by low temperature full wafer adhesive bonding. In this way, electrodes, microchannels, microchambers and cantilevers can be fabricated and sealed at the same time at a wafer level. To the author's knowledge, this is the first example of flap cantilevers embedded in a polymeric microfluidic channel. The mobility of the structure and the leakage are dependent on the size of the sealing gaps between the cantilever and the enclosing channel. In this paper, we present three different fabrication methods for a range of bottom sealing gaps from the micro to the nanometer size. The top sealing gap is determined by the adhesive bonding and is 11 µm wide. Furthermore, various geometrical features have been introduced in order to optimize a valve or flow sensor. The characterization of the structures comprises measurements of the sensitivity of each cantilever design by obtaining their relative spring constant, measurements of their elastic and plastic working regimes and Young's modulus of the SU-8.
This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.