Silver metallization pastes for crystalline silicon PV cells containing nanosized metallic zinc were found to be superior to commercial pastes containing micrometer-sized metallic zinc and micrometer sized zinc oxide in terms of efficiency and firing window. Efficiency performance decreases as the size of the particles increases: nano-Zn > 3.6 μm Zn > 4.4 μm Zn. Advanced electron microscopy techniques were used to investigate the interfacial microstructure between the front-side contact and the Si emitter of nanosized zinc additive based cells fired at temperatures from below to above optimal. These microstructural observations confirmed the possibility of a tunneling mechanism of current flow (a "nano-Ag colloid assisted tunneling" model) in the absence of Ag crystallites. Contact resistance maps were used to guide sampling, leading to a better understanding of the relationship between microstructure and contact resistance. Low contact resistance and higher cell efficiency, especially at under- and overfiring temperature conditions, are due to more uniform silicon nitride etching obtained through the use of nanosized metallic zinc additives.
The effects of adding Sb and In to pyrolytic
SnO2
films were investigated. The large rise in resistivity for larger additions of Sb was studied using x‐ray diffraction, effects of heat‐treatment, determination of activation energy, and scanning electron microscopy. These results indicate that the rise is caused by a gradual loss of crystallinity and demonstrated the important effects of thermal history on the films' structure and electrical characteristics.
Screen-printed thick-film Ag metallization has become highly successful in crystalline Si (c-Si) photovoltaics. However, a complete understanding of the mechanism resulting in low resistance contact is still lacking. In order to shed light on this mechanism for current-generation Ag paste, Si solar cells were fabricated using a range of emitter doping densities and contact firing conditions. Low resistance contact was found to vary as a function of emitter surface P concentration ([P su rface ]) and peak firing temperature. Scanning electron microscope (SEM) analysis revealed thin interfacial glass films (IGF) under the bulk Ag gridline. SEM analysis also showed increasing Ag crystallite density as both emitter [P su rface ] and peak firing temperature increased. Two mechanisms are proposed in forming low resistance contact to highly doped emitters: 1) formation of ultrathin IGF and/or nano-Ag colloids at low firing temperature, and 2) formation of Ag crystallites at high firing temperature. However, on lightly doped emitters, low resistance contact was achieved only at higher firing temperatures, concomitant with increasing Ag crystallite density, and suggests that thin IGF decorated with nano-Ag colloids may not be sufficient for low resistance contact to lightly doped emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.