Yeast strains (157) belonging to at least 9 genera were isolated from natural habitats and screened for killer-sensitive relationships. Killer and sensitive characteristics were exhibited by 17 and 11% of the isolates, respectively. The strains belong to either one of two mutually exclusive killer-sensitive groups.
Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The K m values for chorismate were 558 and 319 M for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg 2؉ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus.
Transcripts of the ntp303 gene accumulate abundantly throughout pollen development, whereas the protein only accumulates to detectable levels after pollen germination. In an attempt to explain the divergence in the accumulation profiles of the mRNA and the protein, we investigated the role of the untranslated regions (UTRs) in enhancing ntp303 translation during the transition from developing to germinating pollen. Luciferase reporter gene fusion constructs containing the ntp3035′-UTR gave rise to luciferase activity that was up to 60-fold higher during pollen tube growth than that of constructs containing different 5′-UTRs. No apparent differences in the luciferase activity of these constructs were observed during pollen development. Thentp303 5′-UTR-mediated increase in luciferase activity was not significantly influenced by coding region or 3′-UTR sequences. Furthermore, enhanced luciferase activity directed by thentp303 5′-UTR occurred predominantly at the post-transcriptional level. A series of 5′-UTR deletion constructs was created to identify putative regulatory sequences required for the high level of translation during pollen tube growth. Two predicted stem loop structures (H-I and H-II) caused a complete inhibition of the enhanced translation after their total or partial deletion. A (GAA)8repeat within the H-I stem loop structure was demonstrated to be important for the modulation of translation efficiency. The H-II stem loop structure was found to be essential for the determination of mRNA stability.
During the development of the lily (Lilium), three phases can be distinguished: the juvenile, the vegetative adult and the flowering phase. Juvenile bulblets sprout with one or a few leaves whereas vegetative adult bulblets sprout with a stem with elongated internodes. The transition to the vegetative adult phase was studied in lily (Lilium × cv. Star Gazer) bulblets regenerating on bulb scale segments in vitro. The phase change was marked by the development of a tunica‐corpus structure in the apical meristem which leads to the formation of an actively growing stem primordium. This structure is absent in juvenile bulblets. Juvenile bulblets first developed competence for phase change during a culture period of at least 6 weeks at 25°C. Subsequent induction of the phase change occurred during a period of 2 weeks at lower temperature (15°C). A major factor influencing phase transition was bulblet weight. Small bulblets never formed a stem whereas large bulblets always formed a stem under inducing conditions. Large bulblets more often formed a stem than small ones but the relation between bulb growth and phase transition was not absolute. A high sucrose concentration, a large explant and a prolonged period for competence development stimulated bulb growth but also phase transition independently of growth. Lowering the concentration of MS‐minerals reduced bulb growth but did not affect phase transition. Under these conditions, phase change was correlated with a low phosphorus content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.