Worldwide rotaviruses A (RVA) are responsible for approximately 215,000 deaths annually among children aged less than 5 years. RVA G1P [8] remains to be associated with >50% of gastroenteritis in this age group. The aim of this study was to assess the genetic variability of G1P [8] strains detected in children with severe diarrhea in Belém, Pará, Brazil, during the postrotavirus vaccine introduction era. The phylogenetic analysis of the proteins VP4 and VP7 allowed to group 40 samples selected from 2009 to 2011 into lineages found to be different from the vaccine strains. As based on genomic constellations determined for these strains we identified reassortments between the genogroups Wa-like and DS-1-like (G1-P[8]-I1-R2-C1-M1-A1-N1-T2-E1-H1) and Wa-like and AU-1-like (G1-P[8]-I1-R3-C1-M1-A1-N1-T1-E1-H1). The antigenic epitopes present in the VP7 and VP4 amino acid residues denote differences and changes in electrostatic charges distribution, as compared to similar residues from Rotarix ® . These findings reflect the first structural analyses of the antigenic regions of VP7 and VP4 of the RVA G1P[8] in children with gastroenteritis in Northern Brazil raising the hypothesis that structural modifications over time at these sites may account for the emergence of new strains that could possibly pose a challenge to current vaccination strategies.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24h) in hyperthyroid rats (daily doses of 0.1 mg L-3,3',5-triiodothyronine (T3)/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl3; 2 doses of 10mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical (O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.- generation/ SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3-treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.
Alzheimer's disease (AD) is a late-onset, progressive degenerative disorder that affects mainly the judgment, emotional stability, and memory domains. AD is the outcome of a complex interaction among several factors which are not fully understood yet; nevertheless, it is clear that oxidative stress and inflammatory pathways are among these factors. 65 elderly subjects (42 cognitively intact and 23 with probable Alzheimer's disease) were selected for this study. We evaluated erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase as well as plasma levels of total glutathione, α-tocopherol, β-carotene, lycopene, and coenzyme Q10. These antioxidant parameters were confronted with plasmatic levels of protein and lipid oxidation products. Additionally, we measured basal expression of monocyte HLA-DR and CD-11b, as well as monocyte production of cytokines IL1-α, IL-6, and TNF-α. AD patients presented lower plasmatic levels of α-tocopherol when compared to control ones and also higher basal monocyte HLA-DR expression associated with higher IL-1α production when stimulated by LPS. These findings support the inflammatory theory of AD and point out that this disease is associated with a higher basal activation of circulating monocytes that may be a result of α-tocopherol stock depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.