In this two-part paper, we consider the transmission of confidential data over wireless wiretap channels. The first part presents an information-theoretic problem formulation in which two legitimate partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through another independent quasi-static fading channel. We define the secrecy capacity in terms of outage probability and provide a complete characterization of the maximum transmission rate at which the eavesdropper is unable to decode any information. In sharp contrast with known results for Gaussian wiretap channels (without feedback), our contribution shows that in the presence of fading informationtheoretic security is achievable even when the eavesdropper has a better average signal-to-noise ratio (SNR) than the legitimate receiver -fading thus turns out to be a friend and not a foe. The issue of imperfect channel state information is also addressed. Practical schemes for wireless information-theoretic security are presented in Part II, which in some cases comes close to the secrecy capacity limits given in this paper.
We propose a mechanism that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs -the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-like slidingwindow approach to network coding. Our scheme has the nice property that packet losses are essentially masked from the congestion control algorithm. Our algorithm therefore reacts to packet drops in a smooth manner, resulting in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our experiments show that our algorithm achieves higher throughput compared to TCP in the presence of lossy wireless links. We also establish the soundness and fairness properties of our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.