In this two-part paper, we consider the transmission of confidential data over wireless wiretap channels. The first part presents an information-theoretic problem formulation in which two legitimate partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through another independent quasi-static fading channel. We define the secrecy capacity in terms of outage probability and provide a complete characterization of the maximum transmission rate at which the eavesdropper is unable to decode any information. In sharp contrast with known results for Gaussian wiretap channels (without feedback), our contribution shows that in the presence of fading informationtheoretic security is achievable even when the eavesdropper has a better average signal-to-noise ratio (SNR) than the legitimate receiver -fading thus turns out to be a friend and not a foe. The issue of imperfect channel state information is also addressed. Practical schemes for wireless information-theoretic security are presented in Part II, which in some cases comes close to the secrecy capacity limits given in this paper.
The generalization error of deep neural networks via their classification margin is studied in this work. Our approach is based on the Jacobian matrix of a deep neural network and can be applied to networks with arbitrary non-linearities and pooling layers, and to networks with different architectures such as feed forward networks and residual networks. Our analysis leads to the conclusion that a bounded spectral norm of the network's Jacobian matrix in the neighbourhood of the training samples is crucial for a deep neural network of arbitrary depth and width to generalize well. This is a significant improvement over the current bounds in the literature, which imply that the generalization error grows with either the width or the depth of the network. Moreover, it shows that the recently proposed batch normalization and weight normalization re-parametrizations enjoy good generalization properties, and leads to a novel network regularizer based on the network's Jacobian matrix. The analysis is supported with experimental results on the MNIST, CIFAR-10, LaRED and ImageNet datasets.Comment: accepted to IEEE Transactions on Signal Processin
Abstract-In this paper, we investigate the linear precoding and power allocation policies that maximize the mutual information for general multiple-input-multiple-output (MIMO) Gaussian channels with arbitrary input distributions, by capitalizing on the relationship between mutual information and minimum mean-square error (MMSE). The optimal linear precoder satisfies a fixed-point equation as a function of the channel and the input constellation. For non-Gaussian inputs, a nondiagonal precoding matrix in general increases the information transmission rate, even for parallel noninteracting channels. Whenever precoding is precluded, the optimal power allocation policy also satisfies a fixed-point equation; we put forth a generalization of the mercury/waterfilling algorithm, previously proposed for parallel noninterfering channels, in which the mercury level accounts not only for the non-Gaussian input distributions, but also for the interference among inputs.Index Terms-Gaussian noise channels, minimum mean-square error (MMSE), multiple-input-multiple-output (MIMO) systems, mutual information, optimum power allocation, precoding, waterfilling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.