We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.
We report heterodyne measurements of Josephson microwave radiation emitted by a parallel array of small superconductor-insulator-superconductor (SIS) junctions at submillimeter-wave frequencies. The array consists of five Nb/Al–AlOx/Nb junctions nonevenly distributed in a niobium superconducting stripline, and is optimized for rf coupling in the 450–640 GHz range. We observed Fiske-like resonant steps in its I-V curve in the presence of magnetic field. The device was placed in a waveguide mount, and its radiation was quasioptically coupled out of the cryostat, to a SIS-mixer spectrometer in the same frequency range, with a 4–8 GHz band for spectral analysis. We detected a coherent signal in the spectra when the array was biased on the first and third steps, respectively, at the first harmonic frequency of 242 GHz and at the fundamental frequency of 493 GHz, both being the Josephson frequencies associated with their dc voltages. This strongly suggests that this type of parallel arrays optimized for wideband rf coupling, though strongly discretized, hosts dynamic fluxon regimes similar to long Josephson junctions, which could find applications in superconducting digital electronics or integrated heterodyne submillimeter-wave receivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.