The objective of this work was to predict essential amino acid (EAA) use and release by the portal-drained viscera (PDV) and liver of dairy cows. Previously derived equations were tested using data assembled from the literature, refit to the data, and modifications were undertaken to determine the best model for each EAA. The refitted model has the same structure as the original equations but is parameterized using a database of group means, as the original equations were derived using a single study with individual cow data and found to be biased. The PDV clearance model predicted portal vein concentrations given inputs of absorbed and arterial fluxes of EAA with root mean squared errors (RMSE) ranging from 3.3 to 12.1% of the observed means, and concordance correlation coefficients (CCC) ranging from 0.86 to 0.99 when using previously reported parameters. The reparameterized model generated from the assembled data set resulted in predictions of EAA portal vein concentrations with RMSE ranging from 3.2 to 8.6% and CCC ranging from 0.93 to 1.00. Slope bias ranged from 12.4 to 55.3% of mean squared errors and was correlated with arterial EAA concentrations. Modifying the model to allow rate constants to vary as a function of arterial EAA concentrations reduced slope bias, resulting in RMSE ranging from 1.9 to 6.5% and CCC from 0.97 to 1.00. Alternatively, splitting the model to account for use of EAA from absorption separately from arterial use resulted in poorer predictions and biologically infeasible parameter estimates. The liver clearance model predicted hepatic vein concentrations from arterial and portal vein input fluxes with RMSE across EAA ranging from 1.9 to 6.8% and CCC ranging from 0.97 to 1.00 when using reported parameters. The reparameterized model generated from the assembled data set resulted in predictions of EAA hepatic vein concentrations with RMSE ranging from 1.9 to 6.7% and CCC ranging from 0.97 to 1.00. Significant slope bias was present for Arg, His, Lys, Phe, Thr, and Val. Altering the model to represent the clearance rate constant as a function of arterial concentrations resulted in RMSE ranging from 1.8 to 6.5% and CCC ranging from 0.97 to 1.00. The combination of PDV and liver clearance models provided predictions of total splanchnic use similar to those of an empirical model representing splanchnic use as a fractional proportion of absorption that had RMSE ranging from 3.0 to 8.6% and CCC ranging from 0.95 to 0.99, with significant slope bias for the majority of EAA.
The objective of this work was to update and evaluate predictions of essential AA (EAA) outflows from the rumen. The model was constructed based on previously derived equations for rumen-undegradable (RUP), microbial (MiCP), and endogenous (EndCP) protein outflows from the rumen, and revised estimates of ingredient composition and EAA composition of the protein fractions. Corrections were adopted to account for incomplete recovery of EAA during 24-h acid hydrolysis. The predicted ruminal protein and EAA outflows were evaluated against a data set of observed values from the literature. Initial evaluations indicated a minor mean bias for non-ammonia, non-microbial nitrogen flow ([RUP + EndCP]/6.25) of 16 g of N per day. Root mean squared errors (RMSE) of EAA predictions ranged from 26.8 to 40.6% of observed mean values. Concordance correlation coefficients (CCC) of EAA predictions ranged from 0.34 to 0.55. Except for Leu, all ruminal EAA outflows were overpredicted by 3.0 to 32 g/d. In addition, small but significant slope biases were present for Arg [2.2% mean squared error (MSE)] and Lys (3.2% MSE). The overpredictions may suggest that the mean recovery of AA from acid hydrolysis across laboratories was less than estimates encompassed in the recovery factors. To test this hypothesis, several regression approaches were undertaken to identify potential causes of the bias. These included regressions of (1) residual errors for predicted EAA flows on each of the 3 protein-driven EA flows, (2) observed EAA flows on each protein-driven EAA flow, including an intercept, (3) observed EAA flows on the protein-driven EAA flows, excluding an intercept term, and (4) observed EAA flows on RUP and MiCP. However, these equations were deemed unsatisfactory for bias adjustment, as they generated biologically unfeasible predictions for some entities. Future work should focus on identifying the cause of the observed prediction bias.
Met and Lys are essential AA that can limit lactational performance in dairy cattle fed protein-sufficient diets. Thus, there is industry demand for ruminally protected (RP) sources of Met and Lys. One method of providing ruminal protection for Met and Lys is lipid encapsulation. The objective of this work was to assess 3 lipid-encapsulated Met prototypes (P1, P2, and P3) and 1 Lys prototype (P4) to determine ruminal protection, small intestine absorption (experiment 1), and animal production responses (experiment 2). Ruminal protection was estimated from 8-h in situ retention during ruminal incubation and intestinal absorption from plasma appearance after an abomasal bolus of the in situ retentate. Blood samples were collected over time to determine plasma Met and Lys concentration responses compared with unprotected Lys and Met infused abomasally. The prototypes were not exposed to the total diet or subjected to typical feed handling methods before evaluation. The bioavailability of P1, P2, and P3 Met prototypes was found to be 14, 21, and 18% of the initial AA material, respectively. The RP-Lys prototype had a bioavailability of 45%. To evaluate production responses, 20 Holstein cows were randomly assigned to 2 trials (n = 10 each) in a replicated Latin square design with 14-d periods. The base diet was predicted to be deficient in metabolizable Met (−14.8 g/d) and Lys (−16.1 g/d) per the Cornell Net Carbohydrate and Protein System (version 6.55). In the Met trial, the base diet was supplemented with RP-Lys to meet Lys requirements, and treatments were as follows: no
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.