SignificanceBioinformatics and virus-induced gene silencing (VIGS)-guided gene discovery combined with biochemical enzyme assays show that tabersonine 3-oxygenase (T3O) and tabersonine 3-reductase (T3R) are required to form 3-hydroxy-16-methoxy-2,3-dihydrotabersonine, an intermediate in the formation of anticancer drug precursor vindoline from tabersonine. In the absence of T3R, tabersonine is converted by T3O to a series of byproducts that can no longer be used by T3R, suggesting a concerted reaction mechanism. Engineering the seven-gene pathway in yeast demonstrated a prototype platform of high potential for industrial production of the anticancer drug precursor vindoline.
ContentsI. Introduction 1195 1. Overview 1195 2. Development of Sugar-Based Synthetic Methods 1197 3. Review of Enzymatic Manipulations Leading to Carbohydrates 1198 4. Future Prospects of the Chemistry of Monoand Oligosaccharides 1199
This tutorial review provides a survey of syntheses in which an enzymatic step contributed to generating downstream molecular complexity in the target. The first part provides a guide to the types of enzymatic transformations suitable for incorporation into synthetic schemes. The principles of symmetry, especially the concept of "latent symmetry", which are often used to simplify enantiodivergent design of targets, are discussed next. The examples are discussed in the order of a degree of experimental difficulty associated with the execution of a particular biological technique. Lipase resolutions and desymmetrizations are discussed first followed by more advanced protocols involving oxidoreductase enzymes and ending with examples of syntheses that employ pathway engineering and directed evolution of proteins. Future prospects of biocatalytic methods as means of efficient preparation of target compounds are indicated. The authors hope that the review will serve to convince those synthetic chemists reluctant to use biological methods to include enzymatic procedures in their design.
Biocatalytic approaches have yielded efficient total syntheses of the major Amaryllidaceae alkaloids, all based on the key enzymatic dioxygenation of suitable aromatic precursors. This paper discusses the logic of general synthetic design for lycoricidine, narciclasine, pancratistatin, and 7-deoxypancratistatin. Experimental details are provided for the recently accomplished syntheses of narciclasine, ent-7-deoxypancratistatin, and 10b-epi-deoxypancratistatin via a new and selective opening of a cyclic sulfate over aziridines followed by aza-Payne rearrangement. The structural core of 7-deoxypancratistatin has also been degraded to a series of intermediates in which the amino inositol unit is cleaved and deoxygenated in a homologous fashion. These truncated derivatives and the compounds from the synthesis of the unnatural derivatives have been tested against six important human cancer cell lines in an effort to further develop the understanding of the mode of action for the most active congener in this group, pancratistatin. The results of the biological activity testing as well as experimental, spectral, and analytical data are provided in this manuscript for all relevant compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.