Biocatalytic approaches have yielded efficient total syntheses of the major Amaryllidaceae alkaloids, all based on the key enzymatic dioxygenation of suitable aromatic precursors. This paper discusses the logic of general synthetic design for lycoricidine, narciclasine, pancratistatin, and 7-deoxypancratistatin. Experimental details are provided for the recently accomplished syntheses of narciclasine, ent-7-deoxypancratistatin, and 10b-epi-deoxypancratistatin via a new and selective opening of a cyclic sulfate over aziridines followed by aza-Payne rearrangement. The structural core of 7-deoxypancratistatin has also been degraded to a series of intermediates in which the amino inositol unit is cleaved and deoxygenated in a homologous fashion. These truncated derivatives and the compounds from the synthesis of the unnatural derivatives have been tested against six important human cancer cell lines in an effort to further develop the understanding of the mode of action for the most active congener in this group, pancratistatin. The results of the biological activity testing as well as experimental, spectral, and analytical data are provided in this manuscript for all relevant compounds.
CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced by hydrogen donors is less general for (1)(pi,pi*) than for (1)(n,pi*) states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.