Uranium is a heavy metal which, following accidental exposure, may potentially be deposited in human tissues and target organs, the kidneys and bones. A few published studies have described the distribution of this element after chronic exposure and one of them has demonstrated an accumulation in the brain. In the present study, using inductively coupled plasma mass spectrometry (ICP-MS) for the quantification of uranium, uranium transfer across the blood-brain barrier (BBB) has been assessed using the in situ brain perfusion technique in the rat. For this purpose, a physiological buffered bicarbonate saline at pH 7.4 containing natural uranium at a given concentration was perfused. After checking the integrity of the BBB during the perfusion, the background measurement of uranium in control rats without uranium in the perfusate was determined. The quantity of uranium in the exposed rat hemisphere, which appeared to be significantly higher than that in the control rats, was measured. Finally, the possible transfer of the perfused uranium not only in the vascular space but also in the brain parenchyma is discussed.
A prospective study of structural rearrangements occurring in normal lymphocytes was carried out. For each of two newborns and four young and two old adults, about 1000 metaphases from 72-h and 120 from 48-h cultures were studied. The frequency of rearrangements between bands 7p14, 7q35, 14q11.2 or 14q12 and 14qter, which is on the average about 0.003, is higher in newborns (0.0043) than in adults (0.0024). Conversely, the rearrangements involving other bands, which have a frequency of 0.025 on the average, are more frequent in old adults (f = 0.038) than in young adults (f = 0.025) and newborns (f = 0.013). The first type of rearrangement, which occurs in utero, may correspond to immunoglobulin and related gene rearrangements. The other rearrangements seem to accumulate progressively and may reflect exposure to mutagens. It is import to discriminate these two types of rearrangements when studying the effect of low doses of mutagens.
The increased number of manned space missions has made it important to estimate the biological risks encountered by astronauts. As they are exposed to cosmic rays, especially ions with high linear energy transfer (LET), it is necessary to estimate the doses they receive. The most sensitive biological dosimetry used is based on the quantification of radiation-induced chromosome damage to human lymphocytes. After the space missions ANTARES (1992) and ALTAIR (1993), we performed cytogenetic analysis of blood samples from seven astronauts who had spent from 2 weeks to 6 months in space. After 2 or 3 weeks, the X-ray equivalent dose was found to be below the cytogenetic detection level of 20 mGy. After 6 months, the biological dose greatly varied among the astronauts, from 95 to 455 mGy equivalent dose. These doses are in the same range as those estimated by physical dosimetry (90 mGy absorbed dose and 180 mSv equivalent dose). Some blood cells exhibited the same cytogenetic pattern as the 'rogue cells' occasionally observed in controls, but with a higher frequency. We suggest that rogue cells might result from irradiation with high-LET particles of cosmic origin. However, the responsibility of such cells for the long-term effects of cosmic irradiation remains unknown and must be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.