The inheritance of resistance to Ascochyta blight, an economically important foliar disease of field pea ( Pisum sativum L.) worldwide, was investigated. Breeding resistant pea varieties to this disease, caused by Mycosphaerella pinodes, is difficult due to the availability of only partial resistance. We mapped and characterized quantitative trait loci (QTLs) for resistance to M. pinodes in pea. A population of 135 recombinant inbred lines (RILs), derived from the cross between DP (partially resistant) and JI296 (susceptible), was genotyped with morphological, RAPD, SSR and STS markers. A genetic map was elaborated, comprising 206 markers distributed over eight linkage groups and covering 1,061 cM. The RILs were assessed under growth chamber and field conditions at the seedling and adult plant stages, respectively. Six QTLs were detected at the seedling stage, which together explained up to 74% of the variance. Ten QTLs were identified at the adult plant stage in the field, and together these explained 56.6-67.1% of the variance, depending on the resistance criteria and the organ considered. Four QTLs were detected under both growth chamber and field conditions, suggesting they were not plant-stage dependent. Three QTLs for flowering date and three QTLs for plant height were also identified in the RIL population, some of which co-located with QTLs for resistance. The relationship between QTLs for resistance to M. pinodes, plant height and flowering date is discussed.
Partial resistance to Mycosphaerella pinodes in pea is quantitatively inherited. Genomic regions involved in resistance (QTLs) have been previously identified in the pea genome, but the molecular basis of the resistance is still unknown. The objective of this study was to map resistance gene analogs (RGA) and defense-related (DR) genes in the JI296 x DP RIL population that has been used for mapping QTLs for resistance to M. pinodes, and identify co-localizations between candidate genes and QTLs. Using degenerate oligonucleotide primers designed on the conserved motifs P-loop and GLPL of cloned resistance genes, we isolated and cloned 16 NBS-LRR sequences, corresponding to five distinct classes of RGAs. Specific second-generation primers were designed for each class. RGAs from two classes were located on the linkage group (LG) VII. Another set of PCR-based markers was designed for four RGA sequences previously isolated in pea and 12 previously cloned DR gene sequences available in databases. Out of the 16 sequences studied, the two RGAs RGA-G3A and RGA2.97 were located on LG VII, PsPRP4A was located on LG II, Peachi21, PsMnSOD, DRR230-b and PsDof1 were mapped on LG III and peabetaglu and DRR49a were located on LG VI. Two co-localizations between candidate genes and QTLs for resistance to M. pinodes were observed on LG III, between the putative transcription factor PsDof1 and the QTL mpIII-1 and between the pea defensin DRR230-b gene and the QTL mpIII-4. Another co-localization was observed on LG VII between a cluster of RGAs and the QTL mpVII-1. The three co-localizations appear to be located in chromosomal regions containing other disease resistance or DR genes, suggesting an important role of these genomic regions in defense responses against pathogens in pea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.