As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.
Magnetic elements on the quiet Sun are buffeted by convective flows that cause lateral motions on timescales of minutes. The magnetic elements can be observed as bright points (BPs) in the G band at 4305 Å . We present observations of BPs based on a long sequence of G-band images recorded with the Dutch Open Telescope and postprocessed using speckle-masking techniques. From these images we measured the proper motions of isolated BPs and derived the autocorrelation function of their velocity relative to the solar granulation pattern. The accuracy of BP position measurements is estimated to be less than 23 km on the Sun. The rms velocity of BPs (corrected for measurement errors) is about 0.89 km s À1 , and the correlation time of BP motions is about 60 s. This rms velocity is about 3 times the velocity measured using cork tracking, almost certainly due to the fact that isolated BPs move more rapidly than clusters of BPs. We also searched for evidence of vorticity in the motions of G-band BPs.
We present an overview of the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST), its instruments, and support facilities. The 4 m aperture DKIST provides the highest-resolution observations of the Sun ever achieved. The large aperture of DKIST combined with state-of-the-art instrumentation provide the sensitivity to measure the vector magnetic field in the chromosphere and in the faint corona, i.e. for the first time with DKIST we will be able to measure and study the most important free-energy source in the outer solar atmosphere – the coronal magnetic field. Over its operational lifetime DKIST will advance our knowledge of fundamental astronomical processes, including highly dynamic solar eruptions that are at the source of space-weather events that impact our technological society. Design and construction of DKIST took over two decades. DKIST implements a fast (f/2), off-axis Gregorian optical design. The maximum available field-of-view is 5 arcmin. A complex thermal-control system was implemented in order to remove at prime focus the majority of the 13 kW collected by the primary mirror and to keep optical surfaces and structures at ambient temperature, thus avoiding self-induced local seeing. A high-order adaptive-optics system with 1600 actuators corrects atmospheric seeing enabling diffraction limited imaging and spectroscopy. Five instruments, four of which are polarimeters, provide powerful diagnostic capability over a broad wavelength range covering the visible, near-infrared, and mid-infrared spectrum. New polarization-calibration strategies were developed to achieve the stringent polarization accuracy requirement of 5×10−4. Instruments can be combined and operated simultaneously in order to obtain a maximum of observational information. Observing time on DKIST is allocated through an open, merit-based proposal process. DKIST will be operated primarily in “service mode” and is expected to on average produce 3 PB of raw data per year. A newly developed data center located at the NSO Headquarters in Boulder will initially serve fully calibrated data to the international users community. Higher-level data products, such as physical parameters obtained from inversions of spectro-polarimetric data will be added as resources allow.
We use G-band and Ca H image sequences from the Dutch Open Telescope (DOT) to study magnetic elements that appear as bright points in internetwork parts of the quiet solar photosphere and chromosphere. We find that many of these bright points appear recurrently with varying intensity and horizontal motion within longer-lived magnetic patches. We develop an algorithm for detection of the patches and find that all patches identified last much longer than the granulation. The patches outline cell patterns on mesogranular scales, indicating that magnetic flux tubes are advected by granular flows to mesogranular boundaries. Statistical analysis of the emergence and disappearance of the patches points to an average patch lifetime as long as 530 ± 50 min (about nine hours), which suggests that the magnetic elements constituting strong internetwork fields are not generated by a local turbulent dynamo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.