Sulfatases play a biologically important role by cleaving sulfate groups from molecules. They can be identified on the basis of signature sequences within their primary structures, and the largest family, S1, has predictable features that contribute specifically to the recognition and catalytic removal of sulfate groups. However, despite advances in the prediction and understanding of S1 sulfatases, a major question regards the molecular determinants that drive substrate recognition beyond the targeted sulfate group. Here, through analysis of an endo-4S-ι-carrageenan sulfatase (PsS1_19A) from Pseudoalteromonas sp. PS47, particularly X-ray crystal structures in complex with intact substrates, we show that specific recognition of the substrate leaving group components, in this case carbohydrate, provides the enzyme with specificity for its substrate. On the basis of these results we propose a catalytic subsite nomenclature that we anticipate will form a general foundation for understanding and describing the molecular basis of substrate recognition by sulfatases.
Pseudoalteromonas is a globally distributed marine-associated genus that can be found in a broad range of aquatic environments, including in association with macroalgal surfaces where they may take advantage of these rich sources of polysaccharides. The metabolic systems that confer the ability to metabolize this abundant form of photosynthetically fixed carbon, however, are not yet fully understood. Through genomics, transcriptomics, microbiology, and specific structure-function studies of pathway components we address the capacity of newly isolated marine pseudoalteromonads to metabolize the red algal galactan carrageenan. The results reveal that the κ/ι-carrageenan specific polysaccharide utilization locus (CarPUL) enables isolates possessing this locus the ability to grow on this substrate. Biochemical and structural analysis of the enzymatic components of the CarPUL promoted the development of a detailed model of the κ/ι-carrageenan metabolic pathway deployed by pseudoalteromonads, thus furthering our understanding of how these microbes have adapted to a unique environmental niche.
Antibiotic tolerance is an underappreciated antibiotic escape strategy that is associated with recurrent and relapsing infections, as well as acting as a precursor to resistance. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting an elevated MIC. It is detected in time-kill assays as a lower rate of killing than a susceptible strain and can be quantified by the metric minimum duration for killing (MDK). The molecular mechanisms behind tolerance are varied, but activation of the stringent response (SR) via gene knockouts and/or chemical induction has long been associated with tolerance. More recently, two Gram-positive clinical isolates from persistent bacteremias were found to bear mutations in the SR controller, Rel, that caused elevated levels of the alarmone (p)ppGpp. Here, we show that introduction of either of these mutations into Staphylococcus aureus confers tolerance to five different classes of antibiotic as a result of (p)ppGpp-mediated growth defects (longer lag time and/or lower growth rate). The degree of tolerance is related to the severity of the growth defect and ranges from a 1.5- to 3.1-fold increase in MDK. Two classes of proposed SR inhibitor were unable to reverse or reduce this tolerance. Our findings reveal the significance of SR-activating mutations in terms of tolerance and clinical treatment failures. The panel of strains reported here provide a clinically relevant model of tolerance for further investigation of its link to resistance development, as well as potential validation of high-throughput tolerance screens.
Pectin is a complex uronic acid-containing polysaccharide typically found in plant cell walls, though forms of pectin are also found in marine diatoms and seagrasses. Genetic loci that target pectin have recently been identified in two phyla of marine bacteria. These loci appear to encode a pectin saccharification pathway that is distinct from the canonical pathway typically associated with phytopathogenic terrestrial bacteria. However, very few components of the marine pectin metabolism pathway have been experimentally validated. Here, we biochemically reconstructed the pectin saccharification pathway from a marine Pseudoalteromonas sp. in vitro and show that it results in the production of galacturonate and the key metabolic intermediate 5-keto-4-deoxyuronate (DKI). We demonstrate the sequential de-esterification and depolymerization of pectin into oligosaccharides and the synergistic action of glycoside hydrolases (GHs) to fully degrade these oligosaccharides into monosaccharides. Furthermore, we show that this pathway relies on enzymes belonging to GH family 105 to carry out the equivalent chemistry afforded by an exolytic polysaccharide lyase (PL) and KdgF in the canonical pectin pathway. Finally, we synthesize our findings into a model of marine pectin degradation and compare it with the canonical pathway. Our results underline the shifting view of pectin as a solely terrestrial polysaccharide and highlight the importance of marine pectin as a carbon source for suitably adapted marine heterotrophs. This alternate pathway has the potential to be exploited in the growing field of biofuel production from plant waste. IMPORTANCE Marine polysaccharides, found in the cell walls of seaweeds and other marine macrophytes, represent a vast sink of photosynthetically fixed carbon. As such, their breakdown by marine microbes contributes significantly to global carbon cycling. Pectin is an abundant polysaccharide found in the cell walls of terrestrial plants, but it has recently been reported that some marine bacteria possess the genetic capacity to degrade it. In this study, we biochemically characterized seven key enzymes from a marine bacterium that, together, fully degrade the backbone of pectin into its constituent monosaccharides. Our findings highlight the importance of pectin as a marine carbon source available to bacteria that possess this pathway. The characterized enzymes also have the potential to be utilized in the production of biofuels from plant waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.