This paper examines the potential in extracting the instantaneous location of maritime moving targets using a passive multi-static radar with Global Navigation Satellite Systems (GNSS) as illuminators of opportunity and a single receiver. The paper presents a theoretical framework for the localization of a moving target from a set of bistatic range measurements. The algorithm and its predicted accuracy are presented. The localization is achieved by what is essentially a multi-lateration technique, which can be applied while the transmitting platform is also in motion. The algorithms and the accuracy predictions, as a function of the number of transmitters, have been experimentally confirmed via a dedicated experimental campaign, where two different maritime targets were detected by up to 12 GNSS satellites belonging to different satellite constellations (GPS, GLONASS and Galileo) simultaneously. To the best of the authors' knowledge, these are the first results of their kind and on this scale not only for GNSS-based passive radar, but for multi-static radar in general.
To reduce probability of intercept, in most cases, the form and magnitude of the radar transmissions are designed to spread energy over as wide a range of dimensions as possible. Equally, in response to this, designs for electronic surveillance measures (ESM) systems have been postulated that increase receiver sensitivity. Their purpose is to increase detection range beyond that of the radar (or to an adequate range if they are to be forward deployed). The authors examine the evolving nature of the relationship between advanced 'low probability of intercept' (LPI) radar designs and future trends in ESM receiving capability. This relationship is far from straightforward, being both probabilistic and dependent on environmental and operational factors. Indeed this is complicated still further by the issue of affordability. The authors compute the performance of ESM and radar systems for a number of cases, including not just simple interception, but also the extraction of information from intercepted signals. In this way the key factors influencing the detectability of LPI radar systems are determined. It is demonstrated that it is never possible to be completely certain that a radar system has not been detected and that the most appropriate way to implement an LPI radar design is always closely related to the tactical environment in which the radar system will be used. Indeed this often overrides the technical aspects of system performance.
Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.