The effects of the ligands phenol and resorcinol on the crystallization of human insulin have been investigated as a function of pH. Powder diffraction data were used to characterize several distinct polymorphic forms. A previously unknown polymorph with monoclinic symmetry (P2(1)) was identified for both types of ligand with similar characteristics [the unit-cell parameters for the insulin-resorcinol complex were a = 114.0228 (8), b = 335.43 (3), c = 49.211 (6) Å, β = 101.531 (8)°].
A series of bovine insulin samples were obtained as 14 polycrystalline precipitates at room temperature in the pH range 5.0-7.6. High-resolution powder X-ray diffraction data were collected to reveal the T6 hexameric insulin form. Sample homogeneity and reproducibility were verified by additional synchrotron measurements using an area detector. Pawley analyses of the powder patterns displayed pH- and radiation-induced anisotropic lattice modifications. The pronounced anisotropic lattice variations observed for T6 insulin were exploited in a 14-data-set Rietveld refinement to obtain an average crystal structure over the pH range investigated. Only the protein atoms of the known structure with PDB code 2a3g were employed in our starting model. A novel approach for refining protein structures using powder diffraction data is presented. In this approach, each amino acid is represented by a flexible rigid body (FRB). The FRB model requires a significantly smaller number of refinable parameters and restraints than a fully free-atom refinement. A total of 1542 stereochemical restraints were imposed in order to refine the positions of 800 protein atoms, two Zn atoms and 44 water molecules in the asymmetric unit using experimental data in the resolution range 18.2-2.7 Å for all profiles.
This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. Highthroughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.
The primary focus of the present work is the study of the effects that two ligands and the crystallization pH have on the crystalline forms of human insulin. For this purpose, human insulin (HI) was co-crystallized with two distinct phenolic derivatives: the organic ligands meta-cresol (m-cresol) and 4-nitrophenol. The formation of polycrystalline precipitates was then followed by means of structural characterization of the individual specimens in terms of unit-cell symmetry and parameters. In both cases, two different polymorphs were identified via X-ray powder diffraction measurements, the first of hexagonal symmetry (R3 space group) at higher pH values and the second of monoclinic symmetry (space group P21) with unit-cell parameters a = 87.4282 (5), b = 70.5020 (3), c = 48.3180 (4) Å, β = 106.8958 (4)°, the latter of which to our knowledge has never been observed before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.