Aim:Brain metastases (BMs) are a common event in the progression of many human cancers. The aim of this study was to evaluate the potential prognostic factors for the clinical identification of a subgroup of patients that could benefit from whole brain conformal radiotherapy (WBRT).Materials and Methods:From January 2010 to February 2014, 80 patients with a diagnosis of BMs underwent WBRT at our Radiation Oncology Department, San Luigi Hospital, Italy. Among them, 36 medical records were retrospective reviewed. Gender, age, Karnofsky performance status (KPS), number of BMs on computed tomography and/or magnetic resonance images, presence or absence of perilesional edema, presence or absence of necrosis pattern, and histology of primary tumor were analyzed. Univariate and multivariate analyses were performed.Results:In our cohort of patients, significant prognostic factors for 20 months overall survival was KPS> 70, while a statistical trend (P = 0.098) was registered regarding primary breast.Conclusion:WBRT can be still considered a standard and effective treatment in patients with BMs. High KPS and breast cancer primary tumor seem to be useful parameters for characterize a subgroup of patients with more favorable prognosis.
A Monte Carlo (MC) method was used to determine small field output correction factors for several active detectors (Exradin A16, Exradin A26, PTW microLion, PTW microDiamond, Exradin W1 and IBA RAZOR) for an Elekta Axesse linac equipped with circular cones. MC model of the linac was built with the GamBet software, using the Penelope code system. The dose-to-water simulation for each cone, ranging from 5 to 30 mm of diameter size, was used to calculate field factors and the results were validated together with Gafchromic EBT3 film. Output factors (OFs) were measured with the active detectors and correction factors were determined using the MC results. The MC simulations agreed with films within 1.2%. OFs measured with Exradin W1 scintillator were in agreement within 0.8% with MC simulations. The Exradin A16 and A26 microchambers under-responded for small fields relative to the MC (−13.1% and −4.6%, respectively). PTW microLion, IBA RAZOR and PTW microDiamond overestimated the output factor for the smallest field (+3.9%, +5.4 and +7.1%, respectively). The present study pointed out that it is crucial to apply the appropriate correction factors in order to provide accurate measurements in small beams geometry. The results showed that the Exradin W1 can be used for very small field dosimetry without correction factors, which shall be contrariwise employed for other detectors.
In radiotherapy treatments the correct dose delivery to the target volume and the consequent conservation of healthy tissues is affected by multileaf collimator (MLC) leaf positioning accuracy and reproducibility, mostly in intensity-modulated radiation therapy (IMRT): For this reason a quality assurance (QA) program is necessary to ensure the best treatment possible to each patient. The aim of this study is the implementation of a method using Gafchromic® RTQA 2 films to perform routine QA on the MLC, both for qualitative and quantitative analysis. A flatbed document scanner (Epson 10000XL) was used in conjunction with radiochromic detector; a scanning protocol was firstly defined to improve readout accuracy. RTQA2 films were irradiated with 6 MV X-rays at different dose levels to obtain calibration curve. To evaluate the leaf positioning accuracy in different conditions, a rhomboidal shape and a field consisting in three rectangular segments were selected. The images quantitative analysis was handled with a program developed in MATLAB to evaluate the differences between expected and measured leaves positions. The reproducibility and global uncertainty of the method were estimated to be equal to 0.5% and 0.6 mm, respectively. Moreover, a qualitative test was performed: A garden picket fence field, consisting in multiple segments 2 × 22 cm2, was realized setting known leaves shifts to test the method sensitivity. The picket fence test shows that the method is able to detect displacements equal to 1 mm. The results suggest that Gafchromic® RTQA2 films represent a reliable tool to perform MLC routine QA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.