Abstract-Many high-dimensional data sets of practical interest exhibit a varying complexity in different parts of the data space. This is the case, for example, of databases of images containing many samples of a few textures of different complexity. Such phenomena can be modeled by assuming that the data lies on a collection of manifolds with different intrinsic dimensionalities. In this extended abstract, we introduce a method to estimate the local dimensionality associated with each point in a data set, without any prior information about the manifolds, their quantity and their sampling distributions. The proposed method uses a global dimensionality estimator based on knearest neighbor (k-NN) graphs, together with an algorithm for computing neighborhoods in the data with similar topological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.