Accurate, distributed localization algorithms are needed for a wide variety of wireless sensor network applications. This article introduces a scalable, distributed weighted-multidimensional scaling (dwMDS) algorithm that adaptively emphasizes the most accurate range measurements and naturally accounts for communication constraints within the sensor network. Each node adaptively chooses a neighborhood of sensors, updates its position estimate by minimizing a local cost function and then passes this update to neighboring sensors. Derived bounds on communication requirements provide insight on the energy efficiency of the proposed distributed method versus a centralized approach. For received signal-strength (RSS) based range measurements, we demonstrate via simulation that location estimates are nearly unbiased with variance close to the Cramér-Rao lower bound. Further, RSS and time-of-arrival (TOA) channel measurements are used to demonstrate performance as good as the centralized maximum-likelihood estimator (MLE) in a real-world sensor network.
Abstract-In the manifold learning problem, one seeks to discover a smooth low dimensional surface, i.e., a manifold embedded in a higher dimensional linear vector space, based on a set of measured sample points on the surface. In this paper, we consider the closely related problem of estimating the manifold's intrinsic dimension and the intrinsic entropy of the sample points. Specifically, we view the sample points as realizations of an unknown multivariate density supported on an unknown smooth manifold. We introduce a novel geometric approach based on entropic graph methods. Although the theory presented applies to this general class of graphs, we focus on the geodesic-minimal-spanning-tree (GMST) to obtaining asymptotically consistent estimates of the manifold dimension and the Rényi -entropy of the sample density on the manifold. The GMST approach is striking in its simplicity and does not require reconstruction of the manifold or estimation of the multivariate density of the samples. The GMST method simply constructs a minimal spanning tree (MST) sequence using a geodesic edge matrix and uses the overall lengths of the MSTs to simultaneously estimate manifold dimension and entropy. We illustrate the GMST approach on standard synthetic manifolds as well as on real data sets consisting of images of faces.Index Terms-Conformal embedding, intrinsic dimension, intrinsic entropy, manifold learning, minimal spanning tree, nonlinear dimensionality reduction.
Abstract. Entropy has been widely employed as an optimization function for problems in computer vision and pattern recognition. To gain insight into such methods it is important to characterize the behavior of the maximum-entropy probability distributions that result from the entropy optimization. The aim of this paper is to establish properties of multivariate distributions maximizing entropy for a general class of entropy functions, called Rényi's α-entropy, under a covariance constraint. First we show that these entropy-maximizing distributions exhibit interesting properties, such as spherical invariance, and have a stochastic Gaussian-Gamma mixture representation. We then turn to the question of stability of the class of entropy-maximizing distributions under addition.
Abstract-Many high-dimensional data sets of practical interest exhibit a varying complexity in different parts of the data space. This is the case, for example, of databases of images containing many samples of a few textures of different complexity. Such phenomena can be modeled by assuming that the data lies on a collection of manifolds with different intrinsic dimensionalities. In this extended abstract, we introduce a method to estimate the local dimensionality associated with each point in a data set, without any prior information about the manifolds, their quantity and their sampling distributions. The proposed method uses a global dimensionality estimator based on knearest neighbor (k-NN) graphs, together with an algorithm for computing neighborhoods in the data with similar topological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.