We propose an experimental method to fully characterize the energy exchange of particles during the physical vapor deposition (PVD) process of thin surface layers. Our approach is based on the careful observation of perturbations of the oscillation frequency of a quartz crystal μ-balance induced by the particles' interaction. With this technique it is possible to measure the momentum exchange of the atoms during the evaporation process and determine the ideal evaporation rate for uniform energy distribution. We are able to follow the desorption dynamics of particles' immediately after the first layers have been formed. These results are in close relation to the surface binding energy of the evaporated material and offer a better control to obtain the desired properties of the thin surface layer. The novelty of our work consists of the demonstration that quartz crystal μ-balance can be successfully implemented to monitor complex dynamics through the energy interaction of particles during PVD. We applied our technique to investigate the PVD mechanism for diverse elements, usually implemented in the development of film surface layers, such as Cu, W, Au, Gd and In, and confirm that our results are in agreement with measurements done previously with other techniques such as low temperature photo-luminescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.