The Influence of Thermal Stresses and Strand Bending on Surface Defects Formation in Continuously Cast StrandsImprovement of slab surface quality is a very important goal in continues casting process of steel. It is closely coupled with casting line productivity and tendency to increase casting speed. In such a case rapid cooling of strand surface mast be employed. It results in thermal stresses development and formation of surface cracks if casting speed, cooling conditions or the arc of casting machine are not appropriate. The strain and stress fields in continuously cast strand have been determined based on the developed thermo-mechanical model and finite element software. It allowed to calculate variation of selected criterions integrals over the hole casting line starting from solidification process in the mould and ending at cutting section. Steady solution to heat transfer equation has been used to calculate strand temperature field. Mould temperature has been calculated from the three dimensional transient model. Finite element method has been employed to build steady and transient heat transfer models. Finite element solution accuracy to the temperature field has been improved. New algorithm of the solidification heat handling has been developed to stabilize a steady solution to the heat transport equation. Damageability of the strand has been evaluated based on four fracture criterions.
The paper presents an attempt of modelling liquid steel motion triggered off by electromagnetic stirring. Steel viscosity was calculated on the basis of temperature field determined with the use of stationary heat conduction equation. Velocity field was determined using Navier-Stokes equations and stream continuity equation. Solution was obtained using the finite element method. The developed model allows to carry out quick simulating calculations of fluid flow. Stationary solution was employed, and this allowed to reduce computation time substantially.Keywords: continuous casting, electromagnetic stirring, numerical modelling, finite elements method W pracy podjęto próbę modelowania ruchu ciekłej stali wywołanej mieszaniem elektromagnetycznym. Lepkość stali obliczano na podstawie pola temperatury wyznaczonego ze stacjonarnego równania przewodzenia ciepła. Pole prędkości wyznaczono korzystając z równań Naviera-Stokesa i równania ciągłości strugi. Rozwiązanie uzyskano metodą elementów skończonych. Opracowany model pozwala na wykonywanie szybkich obliczeń symulacyjnych ruchów ciekłej stali. Zastosowano rozwiązanie stacjonarne, co umożliwiło istotne skrócenie czasu obliczeń.
A three dimensional numerical model of the heat exchange during a charge heating process in a pusher furnace, using the finite element method, was used in this study. The radiative heat exchange in the furnace chamber was carried out based on two methods: the zone method and the method of basing on the average configuration ratio. In the zone method the flux of radiation energy reaching the surface of the heated charge was determined by performing calculations of brightness in a multi-surface closed system which is the pusher furnace chamber filled with an emitting-absorbing medium. In the second case an average configuration ratio was used by setting the radiation energy flux through linking the walls temperature with the furnace atmosphere temperature.Keywords: radiation heat transfer, pusher furnace, charge heating W pracy wykorzystano trójwymiarowy model numeryczny wymiany ciepła w czasie nagrzewania wsadu w piecu przepychowym przy zastosowaniu metody elementów skończonych. Radiacyjną wymianę ciepła w komorze pieca realizowano w oparciu o dwie metody: metodę strefową oraz w oparciu o średni współczynnik konfiguracji. W metodzie strefowej strumień energii radiacyjnej docierającej do powierzchni nagrzewanego wsadu wyznaczano prowadząc obliczenia jasności w wielo-powierzchniowym układzie zamkniętym jakim jest komora pieca przepychowego wypełnionego ośrodkiem emitująco-pochłaniającym. W drugim przypadku wykorzystano średni współczynnik konfiguracji wyznaczając strumień energii radiacyjnej poprzez powiązanie temperatury ścian z temperaturą atmosfery pieca.
THe developmenT of HeaTIng curves for open dIe forgIng of Heavy parTs opracowanIe krzywycH nagrzewanIa odkuwek wIelkogabaryTowycHThe study presents the findings of research on developing heating curves of heavy parts for the open die forging process. Hot ingots are heated in a chamber furnace. The heating process of 10, 30, 50 Mg ingots was analyzed. In addition, bearing in mind their high susceptibility to fracture, the ingots were sorted into 3 heating groups, for which the initial furnace temperature was specified. The calculations were performed with self developed software Wlewek utilizing the finite element method for the temperature, stress and strain field computations.
Charge heating in industrial furnaces is a difficult and complex process. There are many physical phenomena which influence heat transfer. At the charge surface heat transfer takes place by radiation and convection. In order to ensure correct operation of the technological system, it is necessary to achieve the required charge temperature in the whole volume and ensure its uniformity.The influence of selected burner locations inside the furnace on the charge temperature has been analysed. The temperature field and its uniformity in the round charge made of steel for hot open die forging have been analysed. The model and numerical calculations were performed with the ANSYS-Fluent 14.5 package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.