Culture redox potential (CRP) has proven to be a valuable monitoring tool in several areas of biotechnology; however, it has been scarcely used in animal cell culture. In this work, a proportional feedback control was employed, for the first time, to maintain the CRP at different constant values in hybridoma batch cultures for production of a monoclonal antibody (MAb). Reducing and oxidant conditions, in the range of −130 and +70 mV, were maintained in 1-l bioreactors through automatic control of the inlet gas composition. Cultures at constant DOT, in the range of 3 and 300 %, were used for comparison. The effect of constant CRP on cell concentration, MAb production, metabolism of glucose, glutamine, thiols, oxygen consumption, and programmed cell death, was evaluated. Reducing conditions resulted in the highest viable cell and MAb concentrations and thiols production, whereas specific glucose and glutamine consumption rates remained at the lowest values. In such conditions, programmed cell death, particularly apoptosis, occurred only after nutrient exhaustion. The optimum specific MAb production rate occurred at intermediate CRP levels. Oxidant conditions resulted in a detrimental effect in all culture parameters, increasing the specific glucose, glutamine, and oxygen consumption rates and inducing the apoptotic process, which was detected as early as 24 h even when glutamine and glucose were present at non-limiting concentrations. In most cases, such results were similar to those obtained in control cultures at constant DOT.
Enzyme synthesis of methyl fructoside was studied using beta-fructofuranosidase from Sacharomyces cerevisiae and sucrose and methanol as substrates. Taking into account the inhibition and deactivation effects of methanol on the enzyme, a system with 4.9M (20%, v/v) methanol was selected. At this alcohol level, 35% of sucrose is converted to fructoside at low or high substrate concentrations. The effect of enzyme concentration, pH, and temperature on both the synthesis and the hydrolysis of the fructoside was investigated. It was found that if the reaction proceeds at pH 6.0, 4 degree C and/or 0.014 mg/mL (3 U/mL) of beta-fructofuranosidase at varying sucrose concentrations, methyl fructoside may be obtained with a minimum loss of the fructoside at the end of the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.