The determination of the mechanical properties of polymers is more complex than that of many other structural materials, because they display time-dependence in their response to load. Generally, dynamic analysis techniques, such as dynamic mechanical thermal analysis (DMTA), are used to characterize the viscoelastic properties of bulk polymers. However, polymers are increasingly being used as thin films, the properties of which are not readily determined using conventional techniques. Nanoindentation offers the possibility of determining the properties of thin films but has generally only been used to measure static properties. Dynamic nanoindentation equipment has recently become available, but its accuracy with soft polymers is unproven. This paper presents results of a comparison between dynamic nanoindentation, DMTA, and differential scanning calorimetry (DSC) for the determination of the thermal response of four different polymers. A favorable comparison is shown, indicating that dynamic nanoindentation is capable of measuring the time-dependent properties of small samples of polymers.
Plasma techniques are used to generate constrained layer damping (CLD) coatings on metallic substrates. The process involves the deposition of relatively thick, hard ceramic layers on to soft polymeric damping materials while maintaining the integrity of both layers. Reactive plasma sputter-deposition from an aluminium alloy target is used to deposit alumina layers, with Young's modulus in the range 77-220 GPa and thickness up to 335 mm, on top of a silicone film. This methodology is also used to deposit a 40 mm alumina layer on a conventional viscoelastic damping film to produce an integral damping coating. Plasma CLD systems are shown to give at least 50 per cent more damping than equivalent metal-foil-based treatments. Numerical methods for rapid prediction of the performance of such coatings are discussed and validated by comparison with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.