The equilibria between the different forms of the topotecan anticancer drug have been studied at moderately acidic and physiological pH by an integrated computational tool rooted in the density functional theory and its time-dependent extension together with the polarizable continuum model. The results allow an unbiased selection between the different possible tautomeric forms and provide invaluable complements to experimental data. The ultraviolet-visible topotecan spectrum, recorded at moderately acidic pH, is accurately reproduced only by TD-DFT computations including solvent effects. Comparison of the experimental and calculated bands of the UV-vis spectrum at physiological pH indicates the presence of an equilibrium among different forms that is tuned by the microenvironment embedding the drug. The quantitative agreement between TD-DFT/PCM computations and experiments allows the identification of unequivocal spectroscopic signatures for different forms of topotecan.
Assessment of the perturbed matrix method (PMM) ability in reproducing valence UV absorption spectra is carried out on two model systems: 1,2,3-triazine in methanol solution and uracil in water solution. Results show that even using the simplest definition of the quantum center, i.e. the portion of the system explicitly treated quantum mechanically, PMM provides rather good results. This paper further confirms the possibility of using PMM as a theoretical-computational tool, complementary to other methodologies, for addressing the electronic properties in molecular systems of high complexity.
Electron attachment experiments are carried out on the beta-d-ribose molecule in the gas phase for the energy region around 8 eV, and clear fragmentation products are observed for different mass values. A computational analysis of the relevant dynamics is also carried out for the beta-d-ribose in both the furanosic and pyranosic form as gaseous targets around that energy range. The quantum scattering attributes obtained from the calculations reveal in both systems the presence of transient negative ions (TNIs). An analysis of the spatial features of the excess resonant electron, together with the computation and characterization of the target molecular normal modes, suggests possible break-up pathways of the initial, metastable molecular species.
The ultraviolet-visible absorption spectrum of camptothecin (CPT) has been been recorded in aqueous solution at pH 5.3, where the equilibrium among the different CPT forms is shifted toward the lactonic one. Time-dependent density functional theory (TD-DFT) computations lead to a remarkable reproduction of the experimental spectrum only upon addition of explicit water molecules in interaction with specific moieties of the camptothecin molecule. Molecular dynamics (MD) simulations enforcing boundary periodic conditions for CPT embedded with 865 water molecules, with a force field derived from DFT computations, show that the experimental spectrum is due to the contributions of CPT molecules with different solvation patterns. A similar solvent effect is observed for several CPT derivatives, including the clinically relevant SN-38 and topotecan drugs. The quantitative agreement between TD-DFT/MD computations and experimental data allow us to identify specific spectroscopic signatures diagnostic of the drug environment and to develop procedures that can be used to monitor the drug-DNA/protein interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.