Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.
Electron attachment experiments are carried out on the beta-d-ribose molecule in the gas phase for the energy region around 8 eV, and clear fragmentation products are observed for different mass values. A computational analysis of the relevant dynamics is also carried out for the beta-d-ribose in both the furanosic and pyranosic form as gaseous targets around that energy range. The quantum scattering attributes obtained from the calculations reveal in both systems the presence of transient negative ions (TNIs). An analysis of the spatial features of the excess resonant electron, together with the computation and characterization of the target molecular normal modes, suggests possible break-up pathways of the initial, metastable molecular species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.