Summary We have investigated the effect of the soybean isoflavone genistein on the growth and differentiation of human melanoma cells. Four human melanoma cell lines, either completely lacking or containing different levels of wild-type p53, were treated with genistein in vitro in culture. It has been found that genistein significantly inhibited cell growth and that the chemosensitivity might depend on cellular p53 content. Specifically, the data suggest that high levels of wild-type p53 expression make cells resistant to genistein's growth-inhibitory action. Further support for this observation came from the stable transfection studies in which p53 transfectants expressing high levels of wild-type p53 became resistant to genistein. With respect to cell differentiation, our study showed that genistein increased melanin content and tyrosinase activity and caused the cells to form dendrite-like structures. Cells lacking p53 responded more than cells with p53 to dendrite-like structure formation. We also observed that genistein-induced differentiation involved an increase in tyrosinase mRNA level; the mechanisms by which genistein increases tyrosinase transcripts remain to be elucidated. Genistein treatment of the melanoma cell lines resulted in cell cycle arrest at G2/M check point and no significant apoptosis was observed.
Summary Metastatic melanoma, compared with other cancers, appears to be unusual because of its low frequency of p53 mutations and prevalence of wild-type p53 protein in advanced malignancy. Here, we examined the effects of wild-type and mutated p53 (143 Val-Ala) on tumorigenic and metastatic potential of two human melanoma cell lines. The cell line UISO-MEL-4 contains wild-type p53 and is tumorigenic, whereas UISO-MEL-6 lacks p53 and produces lung and liver metastasis upon s.c. injection into athymic mice. Our study showed that UISO-MEL-4 stably transfected with wild-type p53 cDNA driven by cytomegalovirus promoter-enhancer sequences expressed high levels of p53 and p21 and formed s.c. tumours in vivo. Mutated p53 (143 Val-Ala) expression, on the other hand, inhibited tumour growth in 50% of cases and produced significantly slower growing non-metastatic tumours. Reduced tumour growth involved necrotic as well as apoptotic cell death. Inhibition of tumour growth was abrogated by the addition of Matrigel (15 mg ml-1). With UISO-MEL-6 cells, stably transfected with mutant p53, tumour growth was delayed and metastasis was inhibited. In soft agar colony formation assay, both wild-type and mutant p53 transfectants reduced anchorage-independent colony formation in vitro. These data suggest that mutated (143 Val-Ala) p53, which retains DNA binding and some of the transactivation functions of the wild-type p53 protein, suppresses tumorigenic and metastatic potentials of human melanoma cell lines in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.