Ge nanocrystals formed in a SiO 2 matrix by ion implantation were studied by Raman spectroscopy. It is shown that Raman analysis based on the phonon confinement model yields a successful explanation of the peculiar characteristics resulting from the nanocrystals. A broadening and a shift in the Raman peak are expected to result from the reduced size of the crystals. Asymmetry in the peak is attributed to the variations in the size of the nanocrystals. These effects were observed experimentally for the Ge nanocrystals prepared by ion implantation and explained theoretically by incorporating the effect of size and size distribution into the theoretical description of the Raman shift. A comparison with the transmission electron microscopy images indicated that this analysis could be used to estimate the structural properties of nanocrystals embedded in a host matrix. The evolution of nanocrystal formation with annealing temperature, i.e. the size growth, was monitored by Raman spectrometry for several samples and the corresponding nanocrystal sizes were estimated using the phonon confinement model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.