Abstract:The energy spectra of traps in NaCl crystals have been studied in detail by the method of thermoluminescence. Crystals of NaCl were undoped but treated thermally in di¬erent ways. The activation energies of traps form a single oscillator series,¡1 . Contrary to other previously studied crystals with complex lattices, the corresponding line · h! Ram = · h! T L was not found in Raman spectra of NaCl. It is assumed that the oscillator rule is governed by the polaron nature of traps. The trap activation energy is determined by the vibration level from which the transition of the charge carrier to the excited luminescence centre is made possible and depends on the distance between these centres.
Charge carrier traps energy spectra have been investigated in silicon organic polymer poly(di-n-hexylsilane) by fractional thermally stimulated luminescence in the temperature range from 5 to 200 K. The energy spectrum of traps has been found to be discrete in nature, not the quasi-continuous, as it was considered earlier. It has been established that the traps energies form two characteristic series resulting from the vibrational quanta at 373 and 259 cm -1 , respectively. It is important that these vibrational quanta coincide with the frequencies of the totally symmetric vibrational modes of silicon chain which are active in Raman spectrum. The regularities mentioned are analyzed using the oscillatory traps model as the basis.
This article presents the results of an experimental investigation of the energy spectra of charge carrier traps in undoped high-resistivity ZnSe single crystals. Fourteen peaks were found in the thermostimulated luminescence spectra of the ZnSe samples at temperatures between 8 K and 450 K, and the thermal activation energies of the charge carrier traps were estimated for the most intense peaks. It was found that the energy spectra of the charge carrier traps in ZnSe exhibit oscillatory regularity, and the energy of a vibrational quantum was estimated to be ω = 206 cm −1 , which is in good agreement with the vibrational mode in the Raman spectrum. Additionally, a linear relationship was observed between the thermal activation energies of the charge carrier traps and the temperature positions of the maxima in the thermostimulated luminescence of ZnSe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.