The average residence time of liquid flowing over the surface of a rotating cone was determined numerically. The development and propagation of the free surface flow was simulated using the volume of fluid (VOF) method. The numerical simulations were validated using laboratory experiments using soy-oil as a model liquid, and approximate analytical solutions of the simplified governing equations. The numerical simulations revealed the importance of the cone rotation frequencies and the minor influence of the cone angles on the residence times. Higher liquid throughputs produced smaller residence times. As expected, an increasing cone size results in proportionally higher residence times. Furthermore, it was established that even for small cones with a characteristic diameter of, e.g. less than 1m, relatively high (~1 kg/s) throughputs of liquid are possible. It appears that the combination of the decreasing layer thickness and the increasing size of the numerical grid cells with increasing radial cone coordinate hampers the numerical simulation of this system.
The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel derivation of the extended VOF algorithms for this class of applications is presented here. Some practical limitations of this method, that are inherent in the geometry of the described system, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.