An ambient air particulate matter sampling study was conducted at the Wood Buffalo Environmental Association (WBEA) AMS-1 Fort McKay monitoring station in the Athabasca Oil Sand Region (AOSR) in Alberta, Canada from February 2010 to July 2011. Daily 24h integrated fine (PM) and coarse (PM) particulate matter was collected using a sequential dichotomous sampler. Over the duration of the study, 392 valid daily dichotomous PM and PM sample pairs were collected with concentrations of 6.8±12.9μgm (mean±standard deviation) and 6.9±5.9μgm, respectively. A subset of 100 filter pairs was selected for element analysis by energy dispersive X-ray fluorescence and dynamic reaction cell inductively coupled plasma mass spectrometry. Application of the U.S. EPA positive matrix factorization (PMF) receptor model to the study data matrix resolved five PM sources explaining 96% of the mass including oil sands upgrading (32%), fugitive dust (26%), biomass combustion (25%), long-range Asian transport lead source (9%), and winter road salt (4%). An analysis of historical PM data at this site shows that the impact of smoke from wildland fires was particularly high during the summer of 2011. PMF resolved six PM sources explaining 99% of the mass including fugitive haul road dust (40%), fugitive oil sand (27%), a mixed source fugitive dust (16%), biomass combustion (12%), mobile source (3%), and a local copper factor (1%). Results support the conclusion of a previous epiphytic lichen biomonitor study that near-field atmospheric deposition in the AOSR is dominated by coarse fraction fugitive dust from bitumen mining and upgrading operations, and suggest that fugitive dust abatement strategies targeting the three major sources of PM (e.g., oil sand mining, haul roads, bulk material stockpiles) would significantly reduce near-field atmospheric deposition gradients in the AOSR and reduce ambient PM concentrations in the Fort McKay community.
Several organic compounds typical of combustion emissions and bitumen are enriched relative to forest soils for fugitive dust sources near oil sands operations, consistent with deposition uptake by biomonitors. AOSR dust samples are alkaline, not acidic, indicating that potential acid deposition is neutralized. Chemical abundances are highly variable within emission inventory categories, implying that more specific subcategories can be defined for inventory speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.