Helicobacter pylori infection of a distinct subtype of cagA may lead to different pathological manifestation. The aim of this study is to determine the presence of cagA gene and its variants in H. pylori infection among different ethnic groups and its effect on gastroduodenal diseases. Overall detection of cagA among the 205 clinical isolates of H. pylori was 94%. Variations in size of the 3' region of cagA gene were examined among 192 Malaysian H. pylori cagA-positive strains. Results showed that three cagA variants differing in fragment length of PCR products were detected and designated as type A (621-651bp), type B (732-735bp) and type C (525 bp). Although there was no association between any of the cagA subtypes with peptic ulcer disease (p>0.05), an association between cagA subtypes with a specific ethnic group was observed. Specific-cagA subtype A strains were predominantly isolated from Chinese compared to Malays and Indians (p<0.0005), and cagA subtype B strains were predominantly isolated from Malays and Indians compared to Chinese (p<0.05). The cagA type A strains of H. pylori is commonly found in the Chinese patients who have a higher risk of peptic ulcer disease, thus indicating that it could be used as an important clinical biomarker for a more severe infection.
Chloroflexus aurantiacus J-10-fI strain is a thermophilic gram-negative bacterium that possesses many proteins in its genome; some are considered as hypothetical proteins. The use of bioinformatics tools can assist in understanding this organism through structural and functional annotation. Our study aimed to assign structure and function to an ecologically important hypothetical protein present in the bacterial genome. To analyze the hypothetical protein (WP_012259469.1), we used an in silico approach to find out various properties like physiochemical characteristics, subcellular localization, 3D structure, protein-protein interaction and functional annotation. Protein-protein interactions were obtained from the STRING database. In silico analysis revealed that the protein is a soluble protein with predominantly alpha-helices in its secondary structure. The 3D model of the protein has been found to be novel and possessed expected quality as assessed by several quality assessment tools. Functional annotation indicated that the protein acted like a (R)-specific enoyl-CoA hydratase which is linked with PHA synthesis. Protein-protein interactions also showed with high confidence that the protein interacted with a protein synthesizer of enoyl-CoA hydratase involved in PHA biosynthesis. Polyhydroxyalkanoate (PHA) is a novel polyester used as a biodegradable thermoplastic and plays a crucial role in environmental biodegradability and biocompatibility. An extensive variety of microorganisms produces PHA for intracellular carbon and energy storage purposes. In the present investigation, we bioinformatically confirmed that the WP_012259469.1 is associated with the PHA biosynthesis pathway. From our anaylses, we also predict that polyhydroxyalkanoate (PHAs) has the potential to become an alternative source of renewable and biodegradable polyesters.
Litchi (Litchi chinensis sonn.) ranks second after mango amongst the most important fruit crops cultivated worldwide. Litchi is a very valuable crop throughout the world because it is a table fruit and wines are also produced from it. The existing cultivars are highly polyploidy and heterozygous in nature. It is propagated through air layering and marcottage methods and storability is very low. Synthetic seeds can be stored for a long time and its genetic constitution could remain the same. For germplasm maintenance and clonal propagation, synthetic seeds can be used. Somatic embryogenesis has been reported from anther or embryogenic suspension culture in various species of litchi. Regeneration via organogenesis and somatic embryogenesis from zygotic embryos has also been reported in certain species. Developing a methodology for getting somatic embryogenesis with a high frequency from zygotic embryos which is available once in a year, would be particularly useful for genetic improvement of litchi. Cotyledonary stage somatic embryos developed from zygotic embryos were encapsulated in 2% alginate gel. The encapsulated somatic embryos (ESEs) germinated successfully on 0.7% agar medium containing 3% sucrose concentration in NN basal medium (half strength of major and minor salts) with 1 mg•l −1 of gibbrellic acid. Percentage germination and plantlet development for ESEs was higher than that of non encapsulated embryos (NSEs). In comparison to different hormones, gibberellic acid has a significant influence on the germination rate of ESEs after one week of dehydration was seen maximum at 9% sucrose and abscisic acid (1 mg•l −1 ) in half strength of major and minor salts in Nitsch and Nitsch medium resulting in extended storage up to 90 days without loss in germination potential and capability to regenerate into plantlets. Normally developed plantlets regenerated from ESEs were successfully adapted to soil to obtain a full grown plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.